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The objective of this study was to determine the efficacy of model averaging (ensemble modelling) as an
approach for combining digital soil propertymaps derived fromdisaggregated legacy soil classmaps and scorpan
kriging (using soil point data). The study is based in the Dalrymple Shire, QLD and continues on the soil pH
mapping work of Odgers et al. (2014a). Equal weights averaging (EW), Bates–Granger or variance weighted
averaging (VW), Granger–Ramanathan averaging (GRA), and Bayesian model averaging (BMA) were compared
in this study. Model averaged predictionswere estimated to 2m depth at regular depth intervals. 90% prediction
intervals of themodel averaged predictionswerederivednumerically. Neither the disaggregated soilmapnor the
scorpan krigingmapwas particularly accurate. Predictions frommodel averaging however did improve upon the
accuracy,where at all depths, the combined predictionswere an improvement onusing either of the contributing
soil maps alone. We recommend the use of GRA for digital soil mapping applications because its performance
is equal to or better than the generally preferred BMA approach, yet far simpler to implement, and is computa-
tionally efficient. For regional soil studies where polygon mapping and soil point data are available, ensemble
modelling is a useful combinatorial approach.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Odgers et al. (in preparation) described a number of possible
pedometric methods that could be implemented for creating digital
soil property maps. One of these, and the focus of their investigations,
was the generation of continuous soil property maps at regular depth
intervals from disaggregated legacy soil class maps. In their work,
they demonstrated the approach using the DSMART and PROPR algo-
rithms to map soil pH (to 2 m depth) across the 68,000 km2 area of
the Dalrymple Shire QLD at a spatial resolution of 30 m.

This approach for digital soil property mapping is ideal when there
are detailed soil maps with legends available, and when point data is
scarce or even non-existent. But what dowe dowhen there exist legacy
soil maps and a reasonable coverage of soil point data? In terms of
reasonable coverage, experience suggests that a density of between 1
and 10 observations per 1000 km2 is required for making point predic-
tions via a scorpan krigingdigital soilmapping approach (GlobalSoilMap
Science Committee, 2013). Subsequently, in the Dalrymple Shire in
central Queensland, Australia, as investigated by Odgers et al. (in
preparation), the sampling density is approximately 15 sites per
1000 km2—warranting a scorpan kriging digital soil mapping approach
P. Malone),
dgers@sydney.edu.au
tney).
with the available points. With this possibility, there is the luxury
of having two or more (if we use further yet different predictive
approaches) realisations of the same target variable across the same
study area, which could be considered as uncommon in some regions
of the world. Naturally however; one will want to know which map is
more accurate — the disaggregated conventional soil map or digital
map derived from scorpan kriging. Indeed, enquiries of this nature
have been investigated in other parts of the world by Bregt et al.
(1987) and Kempen et al. (2012) as a few examples. Another question
is: what if we combine both maps together, yielding a single new
map? A single map is more useful than two or more independent
realisations of the same target variable; and it is a tantalising prospect
if the combined map is more accurate than each independent map
alone (e.g. Heuvelink and Bierkens, 1992). As such, this study is con-
cernedwith investigating a number of different approaches for combin-
ing digital soil maps with the intention of yielding a single and more
accurate digital soil map of soil pH across the aforementioned study
area of the Dalrymple Shire, QLD.

The scorpan model allows incorporation of existing soil information
as a covariate via the s (soil) factor (McBratney et al., 2003). Henderson
et al. (2005) exemplified this by using existing legacy soil classmapping
for predicting a number of soil properties across the Australian conti-
nent without kriging the residuals. Subsequently, using an existing soil
map as a scorpanmodel input could be considered as one way to com-
bine traditional soil map information with soil point data (Minsany
and McBratney, 2010). Another is to treat the outputs from the
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disaggregated soil map and from scorpan kriging as outcomes or
realisations of two different processes. They could be considered as an
ensemble of outcomes (here, two) that one wishes to combine into a
single outcome. This type of situation is common in atmospheric and
hydrologic research fields (Wagener and Gupta, 2005) where multiple
forecasts of a given process are derived from a number of competing
predictive models. Each contributor model will have its own strengths
and weaknesses. Rather than selecting the single best-performing
model for a given situation or scenario (which is a traditional pursuit),
combining model outcomes is a natural generalisation to this (Diks
and Vrugt, 2010). Ideally, the new combined outcome is at least as
good as any of the individual outcomes.

Combining different model outcomes is termed model ensemble or
averaging (Rojas et al., 2008). Diks and Vrugt (2010) thoroughly
described, applied, and compared to a number of different model aver-
aging approaches with reference to point forecasting for hydrologic
modelling applications. The fundamental basis of these approaches
can be described with the following simple model:

Yi ¼
XKk
k¼1

WkXik ð1Þ

where Yi is the combined outcome at point i from K number of contrib-
utormodels. Xik is the realisation from the kth contributormodel andWk

is the weighting attributed to that model. For most model averaging
approaches, the weights from all the competing contributor outcomes
sum to one. Given this, the variation between the different model aver-
aging methods comes down to how Wk is estimated. The simplest
option is to presume equal weighting across the different contributor
outcomes. This is generally undesirable because it does not take into ac-
count the relative accuracy of the contributor outcomes. A better choice
in that regard is that proposed by Bates and Granger (1969) which is to
weight each contributor outcome by its associated variance. Predictions
that have a higher prediction variance are given a lower weight than
those with a lower prediction variance. It was this approach that was
used in the study by Heuvelink and Bierkens (1992) for combining
soil map predictions (from a legacy soil polygonmap)with interpolated
point predictions. Other model averaging approaches include informa-
tion criterion averaging (Buckland et al., 1997), which is a relatively
straightforward approach compared to the more sophisticated and
computationally demanding Bayesian (Hoeting et al., 1999) and
Mallows model averaging (Hjort and Claeskens, 2003) methods. Inter-
estingly, a far simpler, but equally, if not better performingmodel aver-
aging approach, used in Diks and Vrugt (2010) is Granger–Ramanathan
averaging (Granger and Ramanathan, 1984). In this approach, the
constraint of ensuring that the weights add to unity is relaxed, and
to accommodate this, a constant term is added. The Granger and
Ramanathan model averaging constant and weighting parameters are
solved using ordinary-least-squares (OLS) regression,where the predic-
tor variables are the different realisations from each competing model,
and the target variable is the associated actual observations. This ap-
proach exploits the covariance structure that may be present between
the errors of the competing model outcomes i.e. using OLS estimators
within the linear regression model (Diks and Vrugt, 2010). Granger
and Ramanathan model averaging is advantageous because the OLS
regression optimises the fitting of the parameters to ensure the error
between predictions and observations is minimised, which also results
in an unbiased combined prediction; even if the contributing model
outcomes are biased (Granger and Ramanathan, 1984).

For digital soil mapping, any savings in time and computational load
is an advantage given the large mapping extent and/or high resolution
at which some digital soil maps are produced, as in this study where
soil pH is to be mapped across the 68,000 km2 study area at a 30 m
grid cell resolution. It is therefore worth comparing several model aver-
aging methods in order to assess those that are most attractive for
digital soil mapping with regard to computational efficiency and ability
to return a more accurate map.

In this study, our aim is to investigate and compare some of the
aforementioned model averaging methods. More specifically, we will
investigate the use of:

i) Equal weights averaging,
ii) Bates–Granger averaging (variance weighted averaging),
iii) Bayesian model averaging (with finite mixture model),
iv) and Granger–Ramanathan averaging.

Theworkflowof this investigation is as follows. The data thatwewill
be using is first introduced. The steps for producing digital soil property
maps using scorpan krigingwill be detailed, alongwith the approach for
quantifying the associated prediction uncertainties.We then discuss the
characteristics of each of themodel averaging techniques used and how
they are implemented for combining the soil maps from scorpan kriging
with those produced in Odgers et al. (in preparation). We then detail a
numerical approach for estimating the associated uncertainties of the
combined soil pH map. Here uncertainty for both scorpan kriging and
model averaging is mapped continuously across the study area and is
expressed as a 90% prediction interval. The results and broader discus-
sion of this work are then presented.

2. Materials and methods

2.1. Study area

The study area comprisesmost of the former Dalrymple Shire in cen-
tral Queensland, Australia (Fig. 1). It has an area of about 68,000 km2 and
is approximately 1000 km north of Brisbane (capital city of Queensland,
Australia). The area comprises a large part of the northern Burdekin River
catchment and is bounded on the east by the Seaview and Leichhardt
Ranges, the Great Dividing Range in the west, and the Suttor and
Belyando Rivers in the south-east. Most of the area is flat to gently undu-
lating and elevation generally decreases towards the south-east. It is
drained by the Burdekin River and its tributaries (Rogers et al., 1999).
The Dalrymple Shire lies within the seasonally wet–dry tropics and has
a warm, subhumid climate with a distinct hot-wet summer and a
warm-dry winter. Average annual rainfall ranges from approximately
500 mm in the south-west of the area, to 1600 mm in the north-east
(Rogers et al., 1999). The geology of the Dalrymple Shire is varied and
complex, resulting in the development of a large number of soil types.
A comprehensive description of the geology can be found in a series of
1:250,000 maps and explanatory notes by the Geological Survey of
Queensland (Olgers, 1970). Geological landscapes in the area include
Alluvial, Basalt, Cainozoic (includes Tertiary landscapes), Granodiorite,
Igneous (other than Granodiorite and Basalt), Metamorphic, and
Sedimentary.

2.2. The data

In this particular study we used a soil dataset containing 1080 soil
profile observations of which we were specifically interested in the ob-
served measurements of soil pH (1:5 soil–water solution). Odgers et al.
(in preparation) had previously fitted mass-preserving depth splines to
these soil profile data to harmonise pseudo-measurements of soil pH for
the standardised depth intervals of 0–5 cm, 5–15 cm, 15–30 cm,
30–60 cm, 60–100 cm, and 100–200 cm. After removal of some spurious
soil profiles (missing spatial coordinates, depth observation, etc.), 1048
remained. 300 of these (the same that were used in Odgers et al. (in
preparation)) were kept aside for the purpose of externally validating
predictions derived from scorpan kriging and those frommodel averag-
ing. The map in Fig. 1 illustrates the locations of data used for fitting
scorpan kriging models (calibration data) and for validation in this
study.



Fig. 1. The Dalrymple Shire, QLD, with road network and soil point data. Rounded points are soil data used for calibration of scorpan kriging models. Square points are the 300 validation
point data. Star point is the township of Charters Towers [20.1° S, 146.3° E].
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A number of environmental covariates were collated in order to
serve as covariates in the scorpan kriging process. These covariates
were also used in Odgers et al. (in preparation) and are predominantly
derived from a digital elevationmodel, an air-borne gamma radiometric
survey and from the Landsat 5 Thematic Mapper instrument. Wilford's
(2012) weathering intensity index, derived from the interaction of to-
pography and gamma radiometrics, was also used for this study. This
weathering index provides a quantitative estimate of the degree to
which the regolith is weathered. The covariates used in this study are
listed in Table 1. All the topographic covariates have a 30m grid resolu-
tion and are co-registered to the same raster grid used by Odgers et al.
(in preparation). The radiometric data are provided as raster grids at
Table 1
Environmental covariate data that were under consideration for scorpan kriging models.

Covariate data source Attribute

Digital elevation model Elevation (E), hillshading (HS), mid-slope position (MSP), multi-
terrain wetness index (TWI), slope gradient (S), slope height (SH

Air-borne gamma
radiometrics

Potassium (K), thorium (TH), uranium (U), thorium–potassium
index (WI)

Landsat 5 Normalised difference vegetation index (NDVI)
100 m grid resolution. Fine-gridding was used to coerce this informa-
tion to the 30 m grid using the B-Spline interpolation algorithm from
SAGA GIS. In this study the scorpan kriging andmodel averaging output
was predicted onto the same 30 m raster grid.
2.3. Scorpan kriging: the prediction model

The scorpan kriging prediction is the sum of a deterministic compo-
nent and a stochastic component (Odeh et al., 1995). The deterministic
component requires fitting a predictive model between known values
of the target variable (soil pH) and the values of the environmental
resolution ridge top flatness (MRRTF), multi-resolution valley bottom flatness (MRVBF),
), incoming solar radiation (SR), standardised height (H), valley depth (VD)
ratio (TKr), thorium–uranium ratio (TUr), uranium–potassium ratio (UKr), weathering
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covariates at the known points. The stochastic component requires
interpolation of the residuals from the deterministic model.

In our case we chose to use the Cubist model as the deterministic
component of the scorpan kriging procedure. The Cubist model is a
datamining algorithmwhich allows one to explore non-linear relation-
ships in observed data. It is similar to a typical regression tree model in
terms of it being a data partitioning algorithm. The Cubist model is
based on the M5 algorithm of Quinlan (1992). The Cubist model recur-
sively partitions the data into subsets which are more internally homo-
geneous with respect to the target variable and covariates than the
dataset as a whole. A series of rules defines the partitions, and these
rules are arranged in a hierarchy. Each rule takes the form:

if [condition is true]

then [regress]
else [apply next rule].

Each condition is based on a threshold for one or more covariates.
For example, if elevation is greater than 300 and radiometric potassium
is greater than 1% is one such situation of thresholdingwheremore than
one covariate is used. If the condition returns true then the next step is
the prediction of the target variable by OLS regression on the covariates
within that partition. If the condition returns false, then the rule
identifies the next node in the tree to move to, and the sequence of if-
then-else is repeated. The result is that a separate regression equation
is fit within each partition and the errors are smaller than they would
be if a single regression was fit to the entire dataset (Quinlan, 1992).

The kriging component of the scorpan kriging model involved
modelling the spatial structure of the Cubist model residuals (difference
between observations and associated modelled predictions). For each
depth increment, the spatial structure of the residuals was modelled
with a global spherical variogram, the parameters of which were used
to estimate the residuals via kriging across the extent of the study area.

Mapping soil pH at each depth increment involved recalling the
associated fitted Cubist model and spatial residual model particular to
that depth and, applying them together, with the two independent
outputs being summed to generate final regression kriging predictions.
Independent validation of the regression krigingmodelswere evaluated
by applying them to the 300 withheld site data points. Validation
criteria used in this study were the co-efficient of determination (R2)
and the root mean square error of prediction (RMSE). These criteria
are popularly used in digital soil mapping for assessing the agreement
between observations and corresponding model predictions.

2.4. Scorpan kriging: estimates of uncertainty

Quantification of uncertainties expected from the scorpan kriging
model (at each depth interval), was expressed as 90% prediction inter-
vals. In this study we used a modified version of the method from
Malone et al. (2011b), where prediction uncertainty is estimated empir-
ically on the basis of the underlying regression kriging residuals. The
modification of the approach regards how the geographical space is
partitioned. Because the Cubist model divides the input data into a
series of rule sets, it is probablymore appropriate to examine the empir-
ical distribution of regression kriging residuals within each of these rule
sets, rather than perform an unsupervised classification of the covariate
data space as demonstrated in Malone et al. (2011b). With this slight
modification the underlying assumption is that, not only do the contrib-
uting environmental covariates that parameterise a given rule deter-
mine the spatial distribution of a given target soil property, but also
they determine the magnitude of the prediction uncertainties too.

For each depth interval, we examined the rule sets that contributed
to each model. We were mindful of the fact that to get a meaningful
distribution of model residuals in each rule, intuitively, it was deter-
mined that 30 or more observations would be needed contribute to
that particular rule. For this study, we did not encounter this issue, but
if we had, we could have managed it by limiting the number of rules
that could be realised by the given Cubist model. For each rule, the
contributing n number of observations was subsetted for performing
leave-one-out cross validation analysis (LOCV). Using only the covari-
ates that parameterised the regression model in the rule, LOCV was
performed. LOCV entailed, for each iteration, regression kriging with
n − 1 observations using a single-rule Cubist model (i.e. data was not
partitioned into smaller subsets and essentially equates to a multiple
linear regression model) for modelling using the selected covariates,
followed by fitting a global variogram model to the associated cubist
model residuals. This regression kriging model was then applied to
the ‘left out’ observation, from which a residual was estimated — the
deviation between observed valued and regression kriging prediction
(summation of cubist prediction and interpolated residual). At the
end of each LOCV, for each rule set, the empirical distribution of resid-
uals were formed. For forming 90% prediction intervals to each rule, the
lower 5% and upper 95% percentile values of the empirical distributions
were taken.

To map estimates of uncertainty across the entire study area, we
determined which rule was applied at every cell of the prediction grid.
We then added the corresponding upper (95th percentile) and lower
(5th percentile) values for that rule to the soil pH predictions that
were derived from the scorpan kriging. This generated two maps for
each depth increment, with the first indicating the lower prediction
limit; the second, the upper prediction limit.

Validation of the quantifications of uncertainty involved estimating
the prediction interval coverage probability (PICP). From Malone et al.
(2011b), the PICP is the probability that all observed values fit within
their estimated prediction interval. This probability was estimated for
the 300 validation points, and because a 90% prediction interval has
been defined for each observation, we should expect 90% of all the ob-
servations to fit within their given prediction limits. The uncertainty
model is said to be optimal when this occurs.

2.5. Soil property predictions from disaggregated soil maps

Odgers et al. (2014) used theDSMART algorithm to disaggregate the
map units of a 1:250,000-scale legacy soil polygon map covering the
study area. The result of the spatial disaggregation was a map of the es-
timated probability of occurrence for each of the legacy map's 72 soil
classes. Given reference soil property information for the Dalrymple
Shire soil classes, Odgers et al. (in preparation) introduced the PROPR
algorithm in which they used the probability rasters (all 72 of them)
from DSMART as weights to calculate the weighted mean of soil pH
across the study area at the same standardised depth increments used
here. The probability rasters were also used in a procedure to estimate
the 90% prediction interval for the weighted mean pH.

2.6. Model averaging

With the digital soil maps from scorpan kriging and those derived
from Odgers et al. (in preparation), we effectively have an ensemble
of model realisations. We will refer to these as source maps, where
source map 1 is the one derived from Odgers et al. (in preparation),
while source map 2 is that derived from scorpan kriging. The purpose
of this work is to try to combine both source maps usingmodel averag-
ing methods. The idea behind model averaging is that we can combine
predictions from two or more methods by enhancing the strength and
reducing the weakness of each source map. The model averaging
approaches under consideration in the study are: equal weights (EW),
Bates–Granger or variance weighted (VW), Bayesian model averaging
(with finitemixturemodel; BMA), and Granger–Ramanathan averaging
(GRA). The performance of each of these approaches is assessed using
the withheld 300 observation points. As for scorpan kriging, the RMSE
and R2 statistics are the quantitative indices for performance evaluation
of each model averaging method. In the case of BMA and GRA



Fig. 2. A hypothetical situation for combining two PDFs, in this case for soil pH. Grey lines
indicate PDFs at the same location from two source maps. Source map 1 (mean = 5.5,
standard deviation 1.5); source map 2 (mean = 6.5, standard deviation = 0.5). The
black line is the result of combining or mixing both contributing PDFs together. The
mean is somewherebetweenboth contributingmeanswhile the spread of thedistribution
is a compromise between the two contributing PDFs.
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(described below), the 300 points are actually used to define the
weights attributed to each different model realisation. We do not map
the outputs from all the model averaging methods; rather we do so
only for the one that performs the best overall for all depth intervals.

The general model for model averaging is:

Yi ¼
XKk
k¼1

WkXik ð2Þ

where Yi is the combined outcome at point i from K number of contrib-
utormodels. Xik is the realisation from the kth contributormodel andWk

is the weighting attributed to that model. In this study K=2. The prob-
lem is finding the optimalweight parameter W. Now following is a brief
description of each approach used in this study. Consult Diks and Vrugt
(2010) for detailed information on their theoretical underpinnings.

2.7. Model averaging: equal weights

Under EW, the combined map is simply obtained by giving each
source map equal weight. In this caseW = 0.5 for both maps.

2.8. Model averaging: Bates–Granger or variance weighted

Under VW, each sourcemap isweighted by 1
σ2

i
, whereσi

2 is the attrib-
uted variance associated with a prediction i. From the 90% prediction
intervals of both source maps, and assuming a normal distribution, we
may approximate the prediction variance as:

σ2
i ¼ UPLi−LPLi

2� z

� �2
: ð3Þ

Here UPLi is the upper 90% prediction limit at point i. Similarly LPLi is the
lower prediction limit; and z is the z-value for a given confidence inter-
val, which in our case we attribute a 90% confidence to our predictions,
meaning that z equals approximately 1.64. If we want to predictWi for
the scorpan kriging map (Wi (SK)) predictions, it is estimated as:

Wi SKð Þ ¼

1
σ2

i SKð Þ
1

σ2
i SKð Þ

þ 1
σ2

i DSð Þ

ð4Þ

where σi (SK)
2 and σi (DS)

2 are the predicted variances from both scorpan
kriging (SK) and disaggregated (Odgers et al., in preparation) (DS)
source maps at point i. Naturally Wi (DS) will equal 1 − Wi (SK). Eq. (4)
assumes that the variances from each source map are uncorrelated,
and this is a reasonable assumption given that both maps were pro-
duced from two very different approaches.

2.9. Model averaging: Bayesian model (in the finite mixture model)

BMA is similar to the general model averaging method (Eq. (2));
however, rather than having a single estimate of the weighting factors,
each source map prediction is associated with a conditional probability
density function (PDF). It is considered as a combined forecast density
(Diks and Vrugt, 2010):

g yð Þ ¼
Xk

i¼1
Wi f i yð Þ: ð5Þ

The finite mixture model assumes that the weights W are non-
negative and sum to unity. They are estimated conditionally based on
the observed values and the corresponding predictions from both
source maps. The aim is to estimate the weight parameter density W
and its variance s2. This is achieved using an enhanced Markov Chain
Monte Carlo simulation method called DREAM (DiffeRential Evolution
Adaptive Metropolis) developed by Vrugt et al. (2009). For more detail
on the theory and algorithm of BMA, we refer the reader to Vrugt et al.
(2008) and Diks and Vrugt (2010).

Effectively for this BMA approach, conditionally based on the 300
validation observations and their corresponding predictions from both
source maps, the DREAM algorithm was set to generate 10,000 esti-
mates of the W parameters. Of these, 8000 were discarded as burn-in
samples. The final 2000 samples were used to generate the distribution
ofW for each sourcemap. For each realisation, and associatedW param-
eter set, the general model averaging formula was applied. Calculation
of the RMSE and R2 statistics was performed for each realisation.

2.10. Model averaging: Granger–Ramanathan

Granger and Ramanathan (1984) proposed that the problem of
combining model outcomes could be approached by using traditional
OLS methods. Whatever covariance structure that may be present in
the prediction errors, OLS estimation is able to exploit this, which for
our purposes, is to derive optimal W estimates for each source map.
Essentially GRA involves fitting a multiple linear regression model
where observed values are regressed against the corresponding predic-
tions derived from the different source maps. Such that with the 300
validation points, we fit the model:

Y ¼ W0 þ WSK � XSKð Þ þ WDS � XDSð Þ: ð6Þ

Here Y is the vector of observed values (soil pH) and XSK and XDS are
their corresponding predictions from both source maps. OLS is used to
solve for the parameters:W0, WSK, and WDS. Here the weights WSK and
WDS do not necessarily have to sum to one. W0, the intercept term, is
an ‘in-built’ bias correction term between the observed values and the
individual model source map predictions. Once this model is fitted, it
is used as a global model to derive the combined digital soil map.

2.11. Model averaging: uncertainty estimation

We use a numerical approach to quantify estimates of uncertainty
associated with model averaging. The approach is easiest explained by
considering Fig. 2. Here the plot represents what would be expected
when we compare the predictions and associated uncertainties of
both sourcemaps at a single location or grid cell.We assume the predic-
tions represent the mean, and we can estimate the variance (and
standard deviation) from the prediction intervals as described before.
Therefore, with these parameters, we can derive the full PDF at this

image of Fig.�2
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point for both sourcemaps. In this example, a PDF for a single point from
source map 1 has a mean of 5.5 and standard deviation of 1.5. The PDF
associated with soil pH from source map 2 at the same point has a
mean of 6.5 and standard deviation 0.5. To estimate the uncertainty as-
sociated with the combined prediction (which is represented by the
black line on the plot), we effectively need to combine or mix together
the two source map PDFs. We do this numerically such that each distri-
bution is randomly sampled x number of times. On each sample x, the
model average is calculated— in this case we used the varianceweight-
ed approach for this example (W=0.25 for sourcemap 1 andW=0.75
for sourcemap2). Thiswill ultimately generate a newPDF, albeitmixed,
but where the mean is somewhere between the predictions of both
source maps, and the PDF is a compromise between the two contribut-
ing PDFs. A condition to this approach is that for each of the model
average methods, the weighting remains fixed i.e. the weightings are
not re-computed for each sampling iteration. In the case of BMA
where there is also full distribution of W parameters to sample from,
things become quite complicated in terms of time and required compu-
tations. Here not only do we need to sample the PDFs at each point, we
also have to apply these samples to each realisation (2000) of the BMA
W parameters.

In order to ensure that we adequately sample the full PDFs at each
point, we could run the random sampling for many thousands of itera-
tions. However, from a computational perspective this is not optimal
because the process has to be repeated at every point or grid cell on
the digital soil map (for the study area there are ≈ 1.3 × 108 raster
cells to process). A more efficient alternative to simple random sam-
pling is Latin hypercube sampling (LHS) (McKay et al., 1979; Pebesma
and Heuvelink, 1999). LHS is a stratified random sampling technique
that ensures full coverage of the range of each variable to be sampled
Table 2
Cubist rules and variogram parameters of the cubistmodels for each depth. The number in squa
rule. Spherical models were used for estimating the nugget, sill and distance parameters of the

Depth Cubist model

0–-5 cm Rule 1 [454]: where E N 286
pH = 6.8 + 0.0053VD − 0.4MSP − 1.3NDVI + 0.063WI − 0.00064E +
Rule 2 [239]: where E b= 286
pH = 7.3 − 0.012TKr − 1.3NDVI

5–15 cm Rule 1 [456]: where E N 286
pH = 6.7 + 0.0061VD + 0.191 K + 0.096WI − 0.42MSP − 0.00093E −
Rule 2 [239]: where E b= 286
pH = 7.1 − 0.0096TKr − 0.00022E − 0.02U − 0.1NDVI

15–30 cm Rule 1 [141]: where E N 300 and UKr N 2.09
pH = 6.9 − 21.3S − 2.4NDVI + 0.00156E − 0.49MSP + 0.0003VD
Rule 2 [289]: where E N 300 and UKr b= 2.09
pH = 7.5 − 0.00261E + 0.0056VD + 0.0013SH − 0.13U

Rule 3 [285]: where E b= 300
pH = 7.2 − 0.0146TKr + 0.128WI − 1.7NDVI

30–60 cm Rule 1 [447]: where E N 300
pH = 8.3 − 2.3NDVI − 0.0011E − 0.081WI + 0.0028VD − 0.09 K − 0.
Rule 2 [286]: where E b= 300
pH = 7.7 − 0.0166TKr + 0.184WI − 2.2NDVI

60–100 cm Rule 1 [48]: where E N 482
pH = 10.5 − 3.9NDVI − 0.152WI − 0.0017E − 0.13 K − 0.15U − 0.012

Rule 2 [148]: where E b= 482 and UKr N 2.21
pH = 7.2 + 1.29 K + 0.372WI − 0.0042E − 0.04SH − 2.9NDVI − 0.005

Rule 3 [365]: where E b= 482 and UKr b= 2.21
pH = −2.5 − 0.0049E − 0.089TWI + 0.0061VD − 2.4NDVI − 0.23 K +

100–200 cm Rule 1 [269]:
pH = 11.4 − 0.354WI − 4.2NDVI − 0.074TH − 0.028SH
by maximally stratifying the marginal distribution. A sample is maxi-
mally stratified when the number of strata equals the sample size n.
For independent variables, the cumulative distribution for each variable
is divided into n number of equi-probable intervals. A value is then
selected randomly from each interval. The n values obtained from
each distribution are then matched randomly with those of the other
distribution. In this study we set the sample size to 50 after we found
that based on the validation data, therewas little difference in outcomes
if the PDFs were sampled 50, 100, or 1000 times. Samples sizes of less
than 50, generally resulted in some fluctuating results.

After the LHS was taken and the model average was calculated, the
90% prediction interval was taken by retrieving the 95th and 5th
percentiles of the resulting distribution. This was determined for all
model averaging techniques using the validation data. Mapping the un-
certainties for the combined digital soil map of soil pH was only carried
out for the model averaging method that performed best overall, in
consideration of the outcomes of each soil depth interval. Validation of
the resulting prediction uncertainties involved estimation of the PICP
as described in the methods for the scorpan kriging. The difference
between BMA and the other model averaging methods is that the PICP
was estimated for each realisation of the BMA parameters.

2.12. Implementation of methods

For the most part, the R statistical open-source software (R Core
Team2013)wasused for running the statistics,modelling, andmapping
procedures in this study. Besides the base R functionality, the R pack-
ages used in this study included “Cubist” (Kuhn et al., 2013) for fitting
cubist models; “gstat” (Pebesma, 2004) for variogram fitting; and
“raster” (Hijmans and van Etten, 2013) for handling raster layers and
re braces in the rule conditions is the number of contributing observationsmaking up that
residual variograms.

Residual variogram model (global)

Nugget: 0.24
0.085 K − 0.07U Sill: 0.45

Distance: 5600 m
Nugget-to-Sill ratio: 0.53

Nugget: 0.32
0.017TH − 1NDVI Sill: 0.47

Distance: 7070 m
Nugget-to-Sill ratio: 0.68

Nugget: 0.35
Sill: 0.56
Distance: 726 m
Nugget-to-Sill ratio: 0.63

Nugget: 0.38
06U Sill: 0.81

Distance: 1290 m
Nugget-to-Sill ratio: 0.46

Nugget: 1.09
SH − 0.042MRRTF Sill: 1.09

Distance: 5000 m
TWI Nugget-to-Sill ratio: 1.00

1.9HS − 0.073MRRTF + 0.072SR − 0.013WI

Nugget: 0.47
Sill: 1.31
Distance: 6480 m
Nugget-to-Sill ratio: 0.36
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generating soil map predictions. The DREAM algorithm implemented
for BMA (Vrugt et al., 2009) was run using script developed for Matlab
(Mathworks 2012). All soil maps were produced in ArcGIS version 10
(ESRI 2012).

3. Results and discussion

3.1. Scorpan kriging and uncertainty estimation

A summary of the regression kriging models for each depth interval
is presented in Table 2. For the Cubistmodelling, two ruleswere defined
for the 0–5 cm, 5–15 cm, and 30–60 cm depth intervals. Three rules
were defined for 15–30 cm and 60–100 cm. One rule only was defined
for the 100–200 cm increment where there was only 269 observations
with which to calibrate the model. At the depths where there are two
or more rules, the root of each rule is a conditional statement which
directs the prediction to one of two regression equations depending
on a threshold for the covariate identified in the conditional statement.
Elevation (E) was used in all the conditional statements. At the 0–5 cm
and 5–15 cm depth increments, the elevation threshold was 286m; for
the 15–30 cm and 30–60 cm depth increments the elevation threshold
was 300m; for the 60–100 cmdepth increment the elevation threshold
was 482 m. The UKr was a further conditional variable for the rules at
the 15–30 cm and 60–100 cm depth intervals. Therefore, for this study
area, and from the soil data collected from it, E and sometimes together
with UKr (15–30 cm and 60–100 cm) capture the large scale pedogenic
Fig. 3. Geographical partitioning of Cubist mod
processes useful for mapping soil pH. E corresponds to one type
of topographical characteristic of the scorpan digital soil mapping
model (McBratney et al., 2003); while UKr is a quantitative proxy for
parent materials, and the weathering processes they have undergone
(Wilford, 2012).

Fig. 3 shows an example of the geographical nature to which cubist
rules are applied when we extrapolate the rule thresholding criteria of
a given model, in this case for the 15–30 cm depth increment where
therewere three rules defined. Here rule 1 indicates areas where the el-
evation is greater than 300 m and the radiometric uranium–potassium
ratio is greater than 2.09; while rule 2 delineates areas where also the
elevation is greater than 300mbut the radiometric uranium–potassium
ratio is less than 2.09; and rule 3 simply delineates the area where the
elevation is less than 300 m, which roughly corresponds to the basin
area of the catchment.

Examining the environmental covariates used in the linearmodels of
each rule, wemay consider them as variables that capture the local var-
iations of soil pH across the different landscapes and different depths.
This is excepting of the 100–200 cm depth increment where one rule
was defined, to which the covariates used — WI, NDVI, TH and SH —

would be considered universal variables i.e. used for the entire study
area. In all, the Cubist rule set contained 13 individual linear models.
When we examine the covariates that contributed to these linear
models, the most highly used in order of frequency were (see full
names in Table 1): NDVI (13), WI (9), E (9), K (6), VD (6), U (5), TKr
(4), SH (4), MSP (3), MRRTF (2), TWI (2), TH (2), S (1), HS (1), and SR
el rules for the 15–30 cm depth interval.

image of Fig.�3
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(1). NDVI corresponds to vegetation type or intensity, and fulfils the
o (organism) criteria of the scorpan model. K, U, TKr, TH and WI are
the gamma radiometric variables and fulfil the (p) parent material
scorpan criteria. WI may also fulfil the (a) age criteria of the scorpan
model as well (Wilford, 2012). The other variables E, VD, SH, MSP,
MRRTF, TWI, S, HS, and SR all correspond to topographic variables that
fulfil the (r) relief criteria.

A spherical model was fitted to the variogram of residuals resulting
from cubist modelling at each depth interval. Other than the 60–
100 cm depth increment, the model residuals displayed a moderate
spatial autocorrelation, such that the highest observed nugget-to-sill
ratio was 0.68, which corresponded to the 5–15 cm depth increment.
For the 60–100 cm depth increment there was no spatial dependence
i.e. pure nugget effect. The parameters of the fitted spherical models
(nugget, sill, and range, nugget-to-sill ratio) are shown in Table 2. The
nugget variation increased with depth (excluding the 60–100 cm
depth interval), as did the variance of the residuals. Apart from the
15–30 cm depth, the residuals at the other depths displayed spatial
autocorrelation to 5000 m or more.

Maps of the spatial distribution of soil pH at the 0–5 cm depth inter-
val are shown in Fig. 4. In this figure, the centre map indicates the
prediction resulting from scorpan kriging, while the map on the left
shows the lower prediction limit and the map on the right shows the
upper prediction limit. These prediction limits constitute a 90% predic-
tion interval. Supplementary material shows the resulting maps for
the other depth intervals.

Validation results from scorpan kriging are shown in Table 3 for all
depth intervals. The number of points contributing to the validation is
shown in brackets in the soil depth column. The number of available
observations decreases down the profile. The RMSE increased from
0.69 pH units at the 0–5 cm depth interval to 1.13 pH units at the
100–200 cm depth interval. This result appears indicative of an increas-
ing uncertainty in models with increasing soil depth, which is likely
due to the paucity of covariates that adequately describe the subsoil
spatial variations of soil properties including soil pH. This observation
is also reflected in the R2 values where we calculated values of 0.14 at
0–5 cm which then subsequently decreased to 0.08 at 60–100 cm, be-
fore jumping up again to 0.17 at 100–200 cm where the calculation
was based upon 88 observations. The PICPs for each depth indicate
that the prediction intervals are well defined, such that for the most
part, 90% of the time, an observed value fitted within its estimated
prediction interval.
Fig. 4. Digital soil maps of soil pH for the 0–5 cm depth interval across the Dalrymple Shire. Th
prediction, while the left and right maps respectively are the 90% lower and upper prediction l
Overall, the results of scorpan kriging in this study are consistent
with previous studies examining the spatial variation patterns of soil
pH, despite differences in model structure. For example Minasny and
McBratney (2007) in comparing REML-EBLUP, universal kriging, and or-
dinary kriging spatial predictionmethods formapping soil pH (0–10 cm)
across the Lower Hunter Valley, Australia found a RMSE of 0.674, 0.682,
and 0.690 for each respective method from an independent validation
at this soil depth increment. Similarly Malone et al. (2011a) in
the same study area using a neural network approach combined with
residual kriging found a similar prediction accuracy (RMSE = 0.6) for
the 0–5 cm depth increment. Like in the current study, Malone et al.
(2011a) made quantifications of the uncertainty (that were validated),
and also found an increasing RSME with increasing depth, such that
for the 60–100 cm depth increment the RMSE was found to be 1.6
from an independent validation. This trend of decreasing accuracy
with increasing soil depth as assessed with the RMSE statistic has also
been observed by Sulaeman et al. (2012) and Vaysse et al. (2014) in
recent studies that investigated soil pH mapping. Adhikari et al.
(2014) for national extent mapping of soil pH across Demark at multi-
ple soil depths, despite plentiful data, recorded only a moderate im-
provement of the results found for this current study, where the most
accurate prediction was for the 5–15 cm depth with an RMSE of 0.61.
Adhikari et al. (2014) implemented a similar scorpan kriging approach
to that used in this current study. Sulaeman et al. (2012) used both con-
ceptual (expert-orientated models) and Cubist models. Vaysse et al.
(2014) investigated the use of random forest modelling coupled with
model residual kriging.

Comparing the scorpan kriging results with those predictions made
by Odgers et al. (in preparation) at the same points, both are more-or-
less comparable in the sense that there is a systematic increase in
RMSE estimates with increasing soil depth (Table 3). R2 values from
the validation of predictions from Odgers et al. (in preparation) seldom
breach 0.1 for any depth increment. Based on the RMSE and R2 criteria,
scorpan kriging performedmarginally better than the disaggregated soil
property maps for all depths except the 60–100 cm depth, where the
performance of both models is equivalent.

3.2. Model averaging

The validation results for each of the model averaging methods are
also shown in Table 3. The W parameters attributed to each source
map are indicated as WSK for the scorpan kriging predictions and WDS
11
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ese maps were produced from scorpan kriging. The centre map represents scorpan kriging
imits. Supplementary material has further maps for the other subsequent depth intervals.

image of Fig.�4
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for the disaggregated soil map predictions. The GRA method also has a
W0 parameter, which indicates the intercept value of themultiple linear
regression model. For the other model averaging methods this parame-
ter is always zero. For EW, the WSK and WDS are always 0.5. The
weighting parameters from VW are always locally determined i.e.
they change from point to point — for comparative purposes we have
shown the average of WSK and WDS resulting from VW based on the
300 validationpoints. In the case of the BMAapproachwehave reported
the 2.5th and 97.5th quantiles of WSK and WDS found for each source
map.

A general observation is that for the VW, GRA, and BMA approaches,
the weights preference the scorpan kriging predictions over the disag-
gregated soil map predictions. This is particularly the case for the
0–5 cm, 5–15 cm, 15–30 cm and 100–200 cm depth intervals, but the
weights are more even for the 30–60 cm and 60–100 cm depth
intervals.

In terms of performance, all the model averaging approaches result-
ed in an improvement in prediction accuracy when compared to the
predictions from each source map alone as based on the RSME and R2
Table 3
Weight parameters and soil map quality statistics for scorpan kriging, disaggregated soil map p
weights), VW (variance weighted), GRA (Granger–Ramanathan averaging), BMA (Bayesian m

Soil depth Method W0 WRK

0–5 cm (300) Individual models
RK 0 1
DS 0 0
Combined models
EW 0 0.5
VWa 0 0.68
GRA −0.77 0.79
BMAb 0 0.44–0.97

5–15 cm (299) Individual models
RK 0 1
DS 0 0
Combined models
EW 0 0.5
VWa 0 0.64
GRA −1.40 0.82
BMAb 0 0.4–0.94

15–30 cm (299) Individual models
RK 0 1
DS 0 0
Combined models
EW 0 0.5
VWa 0 0.61
GRA −0.61 0.59
BMAb 0 0.4–0.94

30–60 cm (290) Individual models
RK 0 1
DS 0 0
Combined models
EW 0 0.5
VWa 0 0.59
GRA 0.25 0.45
BMAb 0 0.17–0.84

60–100 cm (215) Individual models
RK 0 1
DS 0 0
Combined models
EW 0 0.5
VWa 0 0.6
GRA 0.93 0.46
BMAb 0 0.13–0.98

100–200 cm (88) Individual models
RK 0 1
DS 0 0
Combined models
EW 0 0.5
VWa 0 0.61
GRA 0.14 0.67
BMAb 0 0.17–0.98

a VWweighting parameters represent the average based on the 300 validation points.
b BMA weighting parameters and quality statistics are reported using the 2.5th and 97.5th p
statistics from independent validation, and was apparent for all depth
intervals. Differences between the different model averaging ap-
proaches were not really apparent in terms of the RMSE and R2 statis-
tics. Of course with the BMA method, it is possible to get some sense
of what to expect in terms of gain in performance by implementing
model averaging because we can retrieve the full distribution of
model diagnostics by running each W parameter set and calculating
the RMSE and R2 statistics. The performance statistics for the other
model averagingmethods alwaysfitted somewherewithin the distribu-
tion of possible outcomes realised from BMA. In terms of validating the
estimations of uncertainty regarding the combined predictions, there
was a tendency for them to be under-predicted as indicated by the
PICP results. For the GRA approach, PICPs were generally acceptable
for the top three depth intervals, but with increasing depth PICPs
went from 82%, 75%, to 83% for the last three depths. PICPs from the
VW were generally lower compared to the other model averaging
approaches at all depths. PICPs for EW were comparable to that of the
GRA approach. The estimations of uncertainty relating to the model
averaged predictions are a compromise of those from the input maps,
redictions, and model averaging. SK (scorpan kriging), DS (disaggregatedmap), EW (equal
odel averaging).

WDS RMSE R2 PICP

0 0.69 14 90
1 0.75 6 96

0.5 0.69 15 87
0.32 0.69 16 84
0.33 0.68 16 87
0.03–0.56 0.68–0.7 14–16 84–88

0 0.7 14 89
1 0.75 6 95

0.5 0.69 16 84
0.36 0.69 17 81
0.39 0.69 18 90
0.06–0.6 0.69–0.7 14–18 84–90

0 0.82 9 88
1 0.84 6 94

0.5 0.8 13 85
0.39 0.8 13 85
0.5 0.8 13 86
0.06–0.6 0.8–0.82 10–13 81–86

0 0.96 9 90
1 0.95 9 96

0.5 0.92 13 82
0.41 0.93 12 80
0.51 0.92 13 82
0.16–0.83 0.92–0.94 10–13 82–85

0 1.13 8 87
1 1.13 7 96

0.5 1.09 11 80
0.4 1.09 11 77
0.43 1.09 11 75
0.02–0.87 1.09–1.13 8–11 78–80

0 1.13 17 90
1 1.19 9 97

0.5 1.11 18 83
0.39 1.10 20 81
0.32 1.10 19 83
0.02–0.83 1.10 19 81–84

ercentiles of the distributions based on 2000 MCMC samples.
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which is why they subsequently don't perform as well in terms of the
PICP validation. While we find the uncertainty estimates acceptable
from this study; given that in the worst case (60–100 cm), 75 times
out of 100 the prediction intervals will cover the reality of what is ob-
served in the field. Ideally, future studies should look at alternative
methods of deriving uncertainty estimates for an ensemble of spatial
soil models. This will be to assess whether the systematic underestima-
tion of the quantifications of uncertainty is an outcome of the particular
uncertainty method used, or indeed corroborates the finding that there
is an additional source of uncertainty that has not been accounted for, to
which further investigative efforts should seek to address.

To generate digital soil maps of combined model predictions and
their uncertainties, we opted to use the GRA approach because it
performed marginally better than the other methods based on the
validation statistics of the predictions and their uncertainties on consid-
eration of all depth intervals. Fig. 5 shows the predicted map and their
associated lower and upper prediction limits of soil pH for the 0–5 cm
depth interval. Supplementarymaterial shows themaps for the remain-
ing depth intervals. Given that the GRA weights for the 0–5 cm depth
interval favoured the scorpan kriging map, the combined map is
very similar to the scorpan kriging map. The subtle differences that do
exist are the result of the contribution of the disaggregated soil map
predictions.

4. General discussion

We have shown that model averaging of soil maps generated from
two different processes — scorpan kriging and disaggregated legacy
soil maps — results in a digital soil property map that is more accurate
than either of the contributor maps. This is an expected outcome for
this type of ensemble modelling approach (Diks and Vrugt, 2010).
Despite the results, it is clear from this work that neither the source
maps nor the model-averaged predictions are particularly accurate in
terms of RMSE or R2 statistics. The fairly poor prediction performance
of both sets of source maps, especially in the subsoil, should not be
interpreted as a failure in the method used to create them rather than
as a limitation of (i) the available legacy data and (ii) the predictive abil-
ity of the suite of scorpan covariates on which prediction models were
based. For example, Odgers et al. (2014) describes that the point data
used in this study have a geo-locational error of up to 100m. This source
of uncertainty could potentially have severe ramifications to the model
fitting process due to an inappropriate co-location of environmental co-
variates with the observed soil data. It is difficult to explicitly quantify
Fig. 5.Model average digital soil maps of soil pH for the 0–5 cm depth interval across the
represents the combined prediction, while the left and right maps respectively are the 9
the other depth intervals.
this source of uncertainty, yet it is likely to have contributed to some
degree to the overall prediction performance of scorpan kriging,
irrespective of soil depth.

Nonetheless, what the model averaging is analogous to doing is
leveraging the best aspects of each contributing model, and discarding
the worst aspects. If both contributing models are poor, ultimately the
quality of the combined outcome will also be relatively poor; however,
one can at least expect the quality of the combined output to be compa-
rable to or better than the best of the contributingmodels. Furthermore,
the fact that we can quantify estimates of uncertainty of the predictions
of soil pH to a depth of 2m provides a strong impetus for further invest-
ment chiefly in the acquisition of new soil data, but also in investigating
potential covariates that could improve upon the results we obtained.

Our results indicated that none of the model averaging approaches
are a particular standout in terms of gains in accuracy. Despite what
the results indicate, the EW approach will generally not be appropriate
if quantifications of uncertainty have been derived; as one will essen-
tially be neglecting to consider an important quality diagnostic of the
data being used. Subsequently, model averaging approach that prefer-
entially weights more accurate predictions is desirable, in which case
the VW, GRA and BMA approaches are a worthwhile consideration for
similar digital soil mapping applications.

BMA is advantageous from the point that one can explore what can
be maximally achieved through model averaging i.e. we can generate a
full distribution of expected model averaged outcomes. Its one disad-
vantage is the computational cost required to achieve that outcome. In
that sense, VW or GRA are reasonable alternatives because the weights
determined from these approaches generally resulted in the best
outcome possible that could be achieved by combining the two source
maps used in this study. The VW approach would work best given
accurate estimates of uncertainty. However, comparing these two
approaches in this study, GRA marginally performed better than VW.

When it comes to mapping the combined predictions and their un-
certainties, due consideration of the computational costs associated
with applying model averaging is necessary. We did not conduct a for-
mal analysis to compare the mapping using either approach. But if one
were to compare the VW with GRA, the computational cost of VW is
that the weighting parameters need to be computed for all raster cells,
after which the sampling of the PDFs is required for approximation of
the uncertainties. The raster cell by raster cell approximation of the
uncertainties is still required by GRA, however; one does not need to
estimate the weighting at each raster cell; instead the fitted multiple
linear regression model is applied. This computational difference
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Dalrymple Shire. These maps were produced using GRA approach. The centre map
0% lower and upper prediction limits. Supplementary material has further maps for
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becomes poignantwith particularly largemapping extents or with fine-
resolution raster grids, as exemplified by the current study. On this
basis, we would recommend the use of GRA for the reasons that it
produces similar or better outcomes when compared to other model
averaging approaches, and that it is also relatively easy and efficient to
apply spatially.

5. Conclusions

• Traditional soil maps are the legacy of a skilled group of individuals
who invested much expertise, time and cost to produce them. Digital
soil mapping will be the richer by including these valuable soil infor-
mation resources within contemporary soil mapping projects.

• We have demonstrated that one way to do this is with model averag-
ing. Here, taking a disaggregated traditional soil map (Odgers et al., in
preparation) and combining it with a digital soil map created from
scorpan kriging (from point data), we generated a new soil map (at
regular depth intervals) that were better than either contributing
map alone.

• A number of model averaging techniques could potentially be used,
but wewould recommendGranger–Ramanathan averaging for digital
soil mapping projects because it performs demonstrably as good
as the more sophisticated methods available such as BMA, and is
efficient to apply in large mapping extents, or for finely resolved
mapping.

• In digital soil mapping where multiple potential models can be used
for fitting spatial prediction functions, we would propose that model
averaging is a good approach to combine such an ensemble of models
so that one can keep the best, and discard the worst aspects of each.
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