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Digital soil mapping (DSM) was used to generate soil property surfaces at 30 m resolution for Tasmanian
Government Land Suitability Modelling in Tasmania, Australia. Soil predictions were required for pH, EC, clay
percentage, stone content, drainage, and depth to sodic and impeding layer. Empirical modelling using a suite
of environmental covariates and the relevant soil attribute data from field-collected soil cores was used to
generate the digital maps. Environmental covariates included: SRTM DEM and derivatives, gamma radiometry,
legacy soil maps, surface geology, and multi-spectral satellite imagery.
An integral component of any DSM process is a sound sampling design that represents the full range of environ-
mental variables used. However, in cases where there are operational constraints, the approach needs to remain
flexible, efficient, and compatible with project area land use and terrain. In two separate study areas, a combined
700 training and 230 validation sites were sampled over 70,000 ha. A conditioned Latin hypercube (cLHS) sam-
pling design was used for the initial sampling for DSM training sites, with ‘contingency sites’ created for alterna-
tive sampling if access was constrained. The pre-defined (‘strict’) sample locations proved difficult to implement
in the field,with a variety of access issuesmaking sampling slow and arduous. In an attempt to increase sampling
progress rates to meet tight project milestones an alternative ‘relaxed’ sample design based on random sampling
of fuzzy k-means covariate clusters (strata) was used for the second study area. Amap of clusters provided to soil
sampling staff allowed difficult sites to be relocated within the same cluster type, maintaining stratification. The
relaxed approach still adequately represented the covariate distributionwhile providing greater flexibility to site
placement. This paper provides background to the Tasmanian DSM project, some discussion of sampling designs
for DSM, and the pros and cons of their implementation in the field with due consideration of operational con-
straints in a Tasmanian case study, highlighting the need for sampling flexibility within ‘real-world’ conditions.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Recently, there has been a growing concern over food security in
Australia where it is feared that food prices could rise by as much as
50% in the next decade. This is mainly due to a potential scaling back
of production in the Murray–Darling Basin as it faces both climate
change and a reduction in water allocation for irrigation. Tasmania is
seen as a potential and significant part of the solution,with its predicted
warming climate allowing a wider variety of food crops to be grown,
and a surfeit of water resources. Steps are being made to develop the
state as an important new agricultural production area for Australia
and the region by development of new irrigation areas, with the aspira-
tion of growing a wider variety of food crops. The basis for the planned
development is the efficient and sustainable management, movement,
and use of water through new irrigation networks.
, Tasmania 7250, Australia.
dd).
The ‘Wealth from Water’ Project commenced in November 2010
to support irrigated agricultural expansion through land suitability map-
ping, using digital soil assessment (Carré et al., 2007). It was a partnership
between the Tasmanian Department of Primary Industries, Parks, Water
and Environment (DPIPWE), the Department of Economic Development,
Tourism and the Arts (DEDTA), the Tasmanian Institute of Agriculture
(TIA), ACLEP (the Australian Collaborative Land Evaluation Program),
and the University of Sydney (through an Australian Research Council
Linkage Project). Commencing in the Tasmanian Meander Valley
(43,000 ha) and Midlands (Tunbridge, 27,000 ha) irrigation districts, En-
terprise Suitability Rules were developed by TIA for 20 enterprises using
Tasmanian agricultural research trials, existing literature, and consulta-
tionwith industry experts. Enterprises included: alkaloid poppies, carrots,
hazelnuts, barley, blueberries, pyrethrum, and commercial hemp. The
suitability rule-sets required soil property and climateparameters, includ-
ing pH, EC (electrical conductivity), clay content, depth to sodic layer,
depth to impeding layer, stone content, drainage class, frost-risk, chill
hours, and growing-degree days (Kidd et al., 2012).
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http://dx.doi.org/10.1016/j.geodrs.2014.11.002
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There are now sufficient published examples describing the predic-
tion of soil property surfaces using digital soil mapping (DSM)method-
ologies based on the scorpan approach (McBratney et al., 2003), tomake
this a scientifically-valid operational approach. These predicted surfaces
can provide continuous and quantitative soil property estimates (as op-
posed to conventionally-derived polygonal soil type surfaces), also having
the advantage of statistical validation and associated uncertainty of pre-
diction. Soil propertymappingusing thesemethodologieswas considered
the optimal approach to provide suitability model inputs within available
time and resources. An integral component of a DSM process is a sound
sampling design that ensures calibration and validation sites are repre-
sentative of the full distribution of the covariates used for prediction. Ide-
ally sampling should encompass the full range of environmental
conditionswithin a study area. Doing thiswill limit the subjectivity inher-
ent in traditional sampling approaches such as free-survey (National
Committee on Soil and Terrain, 2009). However, for operational endeav-
ours such as the Wealth from Water Project, the sampling approach
needs to remain flexible, efficient, and compatible with project area
land use and terrain. Largemapping areas will require even greater oper-
ational flexibility. Such operational projects often have limited budgets,
are time-constrained, and require efficiencies in field effort, often the
most expensive component in land resource assessment. The common
DSM approach to sampling using a ‘strict’ sampling design with pre-
determined coordinates is often difficult and time-consuming to apply,
with numerous access constraints either slowing progress or preventing
sampling at desired locations. This paper documents an operational
DSM case study, the logistical problems encountered using a popular
pre-defined sampling strategy, and the interim solution developed and
applied within the tight project time-constraints. The approach used co-
variate stratification for a randomised sample design which allowed
physically impractical sites to be manually re-located within the field to
more accessible locations within corresponding strata, while still main-
taining the same number of samples from each of the strata types. The
thrust of this paper is not to provide an exhaustive review and com-
parison of themultitude of sampling techniques developed for predictive
soilmapping, but to discuss the problems inherent in real-world soil sam-
pling, and document the pragmatic methodological compromise used to
improve operational sampling speed and efficiency, while still providing
representation of the environmental co-variables used for predictions.

1.1. Soil sampling approaches

Strategies used for soil sampling design generally include; tradition-
al and subjective free-survey for conventional soil landscape, or soil as-
sociation mapping (National Committee on Soil and Terrain, 2009);
geostatistical approaches, that evenly sample the physical geographic
space; and techniques developed for digital soil mappingwhich sample
the entire covariate feature space (Minasny andMcBratney, 2006; Vašát
et al., 2010). Sampling optimisation across the full range of predictor or
explanatory variables (covariates) is necessary to maximise environ-
mental correlation (McKenzie and Ryan, 1999). Brus (2010) differenti-
ated between design-based and model-based approaches; design-
based sampling mainly uses a statistical approach where a random
component is essential in the selection of sampling locations, and the
inference is based on the selection probabilities. This is useful if there is
a need to know the status or the change in soil properties over an area,
e.g. monitoring soil carbon. A model-based approach presumes that the
unknown soil attribute value at any location is random; if there is a re-
quirement for mapping or knowing how the soil properties vary in the
field the model-based sampling approaches are commonly used.

A sampling strategy can either be undertaken in terms of optimally
covering the geographical space, the covariate feature space, or both.
There has been some debate as to whether geographic constraints,
i.e. spacing or dispersion of the sampling design, or perhaps incorpora-
tion of coordinate positions as covariates, is warranted (Minasny and
McBratney, 2006). The accuracy of estimating the spatial means of
an environmental variable can be increased by dispersing the sample
locations uniformly across the study area (Walvoort et al., 2010).
However, the need for the spatial dispersion of sample locations could
be diminished when using environmental variables for predictions,
or when environmental predictors are known and available (Brus
et al., 2006), that is, the sampling design is based on the covariate distri-
bution of values.

A popular sampling method used in DSM is the ‘conditioned Latin
hypercube’ (cLHS), a purposive model-based sampling approach that
maximally stratifies the full multivariate distribution, where the sample
distribution closely replicates the covariate distribution (Minasny and
McBratney, 2006). However, such pre-determined, ‘strict’ sampling
methods can be inflexible with little room for alternative site selection
in the field. This can be exacerbated when sampling intensively-used
agricultural land due to a range of access constraints, such as farmer
consent, infrastructure, contamination, travel distance and manage-
ment phase. Logistical and operational problems have been document-
ed using ‘strict’ approaches elsewhere; Roudier et al. (2012)
incorporated operational constraints into the cLHS design where sam-
pling costs were assimilated as a consideration of distance to roads for
ease of access, while Thomas et al. (2012) encountered access difficul-
ties due to extreme terrain, travel distance and vegetation cover while
sampling mountainous, heavily vegetated landscapes.

Clifford et al. (2014) also identified operational sampling problems
using a pre-defined sampling regime in a large and remote study region
in Queensland, Australia, totalling 12.8 million ha. In response, they
developed a ‘flexible Latin hypercube sampling (LHS)’ approach and
simulated efficiencies in field effort that potentially increase soil sam-
pling rates with respect to resourced time-constraints. Clifford et al.
(2014) aimed to optimally cover the covariate feature space while
targeting more easily accessible sites (constrained to buffers around
formed roads and tracks), and providing alternative nearby sites (cover-
ing a surrounding area of 40 ha) for considerationwhen initial sampling
sites are inaccessible. The flexible LHS approach was developed and
documented after completion of the Tasmanian field campaign de-
scribed in this paper, so was therefore not considered in this project.

Due to the unforseen time taken to carry out an initial cLHS sampling
campaign within our case study, a timely and alternative solution was
needed to ensure that remaining field sampling was completed by the
strict project milestones, and ensure field-work was completed before
many areas became too wet to sample due to expected seasonal rain.
It was chosen to use ‘fuzzy k-means’ (FKM) clustering of covariates as
sampling stratum, where target sites were equally distributed by num-
ber within each stratum, and field staff could move sites within the
mapped clusters to maintain stratification and representative covariate
distribution.
1.2. k-Means stratification of covariates

k-Means is a popular clustering methodology for multivariate
analysis which determines clusters based on multivariate centroids,
minimising the mean squared distance between objects and the closest
centroid values (Brus et al., 2006; Hartigan, 1985; MacQueen, 1967).
Multivariate within-cluster variance is optimised to be as small as
possible for each cluster, grouping very similar attribute values for
each cluster, and small spatial distances between them for spatially-
structured datasets (Burrough et al., 2000). Fuzzy k-means (FKM) is
an advanced option of ‘hard’ k-means where each observation has a de-
gree of belonging to clusters. Burrough et al. (2000) demonstrated the
use of FKM for partitioning soil–landscape data, useful for prediction
of discrete properties or soil types with boundary overlaps. It has also
been used for sampling design, both for geographical clustering, when
no environmental variables are used for predictions (Brus et al., 2006),
and feature, or covariate stratification (Minasny and McBratney,
2006). However, FKM is not able to accommodate categorical variables,
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therefore un-ordered categorical data, such as soil type or geological
mapping, are not able to be used as sampling covariates.

The classical FKM algorithm, as succinctly described by Bezdek et al.
(1984), computes a cluster membership function, a value between 0
and 1, which determines the probability that a pixel or raster cell
belongs to a particular cluster. The algorithm undergoes a series of itera-
tions, where the value of a fuzzy exponent is set to a value greater than
1 to control the amount of ‘fuzziness’ of pixel membership to each
cluster. The membership function is randomly initialised to a value
between 1 and 0, and the cluster centroids computed. The distances
(e.g. Euclidean or Mahalanobis) between each pixel value and the cluster
centroidmeasure are determined, and amembership function is generat-
ed. Amembership value for each pixel belonging to each cluster is obtain-
ed by re-running the algorithm such that it is looped until the
membership values for all pixels converge and do not change significant-
ly. The membership value for a pixel belonging to a cluster that is closest
to 1 implies that pixel most likely belongs to that cluster (Chapron, 2011;
Zadeh, 1968). For a ‘good’ fuzzy k-means classification, the partition coef-
ficient (the ratio of within-cluster variance to between-cluster variance)
should be close to 1, and the classification entropy (information entropy)
should be close to 0 (Burrough et al., 2000).

2. Aims

The aims of this paper are to;

1. Document a case study of the real-world problems and potential
solutions associated with a strict (pre-determined) sampling-
design in a Tasmanian operational DSM programme.

2. Test a sampling design that represents the covariate feature space,
but is able to increase sampling rates when compared against a
‘strict’ approach.

3. Materials and methods

3.1. Project areas

Tasmania, as Australia's southern-most, and only island state has a
cool-temperate climate, with mean annual rainfall averaging over
1800mm/yr in thewest, to less than 450mm/yr in the central Midlands
(Bureau of Meteorology, Australia). Population is about 500,000 people,
with agriculture being one of the most economically important activi-
ties, covering a diverse range of soils and landscapes and associated na-
tive flora and fauna. The project was undertaken across two separate
pilot areas; the Meander and Midlands (Tunbridge) Irrigation Districts,
with a total area of approximately 70,000 ha (Fig. 1).
Fig. 1. Project area locations, Tasmania, Australia.
3.1.1. Meander
The Meander project area is primarily used for a wide range of

agricultural practices, including grazing (cattle and sheep), dairy,
cropping (cereals, vegetables and alkaloid poppies) and perennial horti-
culture (strawberries, raspberries and hazelnuts). Rainfall averages
between 650 mm/yr in the East and over 1000 mm/yr in the West.
Mean minimum temperatures range from 0.5 °C in winter to 10.4 °C
in summer, and mean maximums of between 22.5 °C and 8.7 °C for
summer and winter respectively. The Tasmanian central plateau and
the escarpment of the Great Western Tiers mountain range dominate
the landscape in the Meander area, where extensive block faulting has
disrupted the surface during the lower to middle Tertiary Period. The
Meander project boundary follows the Meander Irrigation Scheme and
was selected because it has an inherent variety of soils, and a diversity
of land uses and landscapes. Tasmanian geological structure largely de-
termines the pattern of soils due to the strong influence of rock type
upon soil formation. The Meander area contains soils of the Launceston
Tertiary Basin to the East, which comprise a series of alluvial and relict
river terraces in associationwith Smectitic clays in drainage depressions
and most recent flood plains (Vertisols; IUSS Working Group, 2007),
and sodic (exchangeable sodium % N 6) texture-contrast (sharp change
between top-soil and sub-soil textures, with a clay increase of N20%)
soil terrace series (Solonetz or Lixisols; IUSS Working Group, 2007),
with various distributions of Aeolian cover sands. Red volcanic grada-
tional soils derived from Tertiary Basalt (Nitisols or Acrisols; IUSS
Working Group, 2007) dominate the landscape around the Deloraine
area,while poorly drained, complex alluvial soils are found in theMean-
der township area to the South (Gleysols, Fluvisols, and Lixisols; IUSS
Working Group, 2007). Outcrops of Jurassic dolerite are scattered
through the area which produce diverse soils (Luvisols; IUSS Working
Group, 2007) with abundant coarse fragments (Spanswick and Zund,
1999).

3.1.2. Midlands
The Midlands project area covers 27,000 ha of the southern part of

the Midlands Irrigation Scheme, an area from Oatlands and North to
Tunbridge, and is used for both grazing (predominantly sheep) and
cropping (cereals and poppies). Mean minimum temperatures range
from 1.5 °C in winter to 10.5 °C in summer, andmeanmaximums of be-
tween 24.5 °C and 11.3 °C for summer andwinter respectively. The area
is located at the origination of the Launceston Tertiary Basin, an ancient
and relict river system that drained central Tasmania to Bass Straight in
the North. The soil landscape is comprised of recent and higher level al-
luvial terraces, bound by Jurassic Dolerite hills to the South. Triassic
Sandstone has been capped by the dolerite on foot-slopes to the East,
forming dolerite and sandstone fans through alluvial areas. The area
receives less than 500 mm/yr. in annual rainfall and is comprised of
small areas of primary salinity and widespread sodic soils (Solonetz or
Lixisols; IUSSWorking Group, 2007), with black cracking clays in drain-
age depressions and recentflood plains (Vertisols; IUSSWorkingGroup,
2007; Kidd, 2003). The Oatlands area is separated from the Tunbridge
area by dolerite hills to the North and is scattered with areas of Triassic
Sandstone and Permian mudstone (Luvisols, Lixisols, Phaeozems; IUSS
Working Group, 2007; Spanswick and Kidd, 2001).

3.2. Scorpan spatial covariates

Existing legacy soil data was obtained for the Meander and Midland
study areas: Quamby Soil Map (Spanswick and Zund, 1999); Interlaken
Soil Map (Leamy, 1961); and Oatlands Soil Map (Spanswick and Kidd,
2001). These soil data sources and associated database site density
alonewere not of the scale or quality to produce reliable suitability sur-
faces necessary for achieving the outcomes of the project. Nonetheless,
these legacy data are still useful as DSM covariate information. In addi-
tion the to the legacy soil mapping data, other available scorpan covari-
ates were assembled and processed to a common 30 m grid system for



Table 1
Tasmanian spatial covariates.

Scale Spatial covariates Scale/resolution Reference/source

Categorical data
Regional Soil map 1:100,000 Spanswick and Zund (1999); Leamy, (1961);

Spanswick and Kidd (2001)
Regional Land capability map 1:100,000 Noble (1993)
Regional Land use map 1:50,000 DPIPWE (2012) (in prep)
Regional Vegetation map (TASVEG) v 2.0 1:25,000 DPIPWE (2009)
Regional Surface geology map 1:25,000 Mineral Resources Tasmania (2008)

Remote sensing
Local Rapid eye multispectral 5 m Cradle Coast Authority (2010)
Local SPOT bands 1,2 & 3 5 m SPOT Image (2009)
Local SPOT NDVI 30 m

(processed)
SAGA GIS (system for automated geoscientific
analyses, http://www.saga-gis.org), 2009

Local LandSat principal components 30 m
(processed)

SAGA GIS (system for automated geoscientific
analyses, http://www.saga-gis.org), 2009

Local Gamma radiometrics (radioactive nuclides — K, U, Th, total dose) Mineral Resources Tasmania (2004)

Terrain
Local SRTM DEM-S 30 m 1 arc sec digital elevation model, adaptively

smoothed, Geosciences Australia (2011)
Local Slope, aspect, curvatures (plan & profile), topographic wetness index (TWI), multi-resolution

valley bottom flatness (MR), multi-resolution ridge top flatness (MRRTF).
30 m SAGA GIS (System for Automated Geoscientific

Analyses, http://www.saga-gis.org)
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the study areas using SAGA GIS (System for Automated Geoscientific
Analyses, http://www.saga-gis.org), described in Table 1. Terrain deriv-
atives were generated from the Shuttle Radar Topography Mission
(SRTM) DEM (Gallant et al., 2011) using the ‘Basic Terrain Analysis’
SAGAmodule for slope, plan and profile curvature, valley depth, and as-
pect. Topographic wetness index was generated using the ‘Topographic
Wetness Index’module in SAGA, using the ‘standard’ settings, together
with MrRTF (multi-resolution ridge-top flatness) and MrVBF (multi-
resolution valley bottom flatness) (Gallant and Dowling, 2003). NDVI
(Normalized Difference Vegetation Index) was generated from SPOT
imagery using SAGA, where

NDVI ¼ NIR – VISð Þ= NIR þ VISð Þ

and NIR is the near infra-red band, and VIS is the visible red band.

3.3. Sampling

At the time of preparing the sampling locations for the Meander area,
the motivation was focussed on sampling the covariate feature space
rather than equally spacing the sampling locations, so that sites could
be used to predict a suite of soil properties. Soil sampling was effectively
a ‘strict’model-based approach using available covariate data to provide
the best chances of predicting multiple properties using a conditioned
Latin hypercube (cLHS) sampling design. In an attempt to provide greater
samplingflexibility than the predefined cLHS approach used for the initial
project sampling, the fuzzy k-means scorpan covariate stratification ap-
proach was used for validation of soil attribute maps in the Meander
area. The desired DSM outcome was to depict the soil property values of
each pixel as precisely and efficiently as possible; thus, probability-
based validation (Brus, 2010) was not considered necessary or attainable
within project time-constraints and resources, and a model-based sam-
pling approach deemed adequate. In the Midlands area, FKM covariate
stratified sampling was used for both training, and a separate validation
sample set. The approach, therefore, aimed to provide a sampling meth-
odology that adequately represented the covariate feature space, yet
remained practical and flexible for rapid operational DSM sampling.

3.4. Meander soil sample design (training)

Two-hundred training sites (data density of 5 samples per 10 km2)
were estimated as appropriate for the required resolution for Meander,
a similar density to that determined by Brungard and Boettinger (2010),
to be used for inference and mapping of soil properties based on avail-
able covariates and observed soil information. The cLHS algorithm
(Minasny andMcBratney, 2006) generated 200 locations, with 25 addi-
tional contingency target sites generated as a separate sample for situa-
tions where samplingwas not possible due to access, physical sampling
constraints or site contamination. Locations were produced using the
covariates described in Table 1.

For training sites the cLHS ‘strict’ sampling design was found to be
slow to implement in the Meander area due to operational constraints
and the subsequent need to navigate to a completely alternative site.
There was a need for a more flexible approach to increase sampling
progress rates to meet project milestones, with limited time available
to develop or test any novel or adaptive variations to the cLHS approach.
It was decided to test and apply fuzzy k-means (FKM) covariate stratifi-
cation, where pre-determined random sample locations could be man-
ually adjusted in the field when access was constrained.

A fuzzy k-means cluster design was generated for validation of the
Meander area soil mapping. This involved stratification of the environ-
mental covariate feature space and a random allocation of field samples
from each cluster using JMP software (JMP, Version 9. SAS Institute Inc.,
Cary, NC, 1989–2012). Covariates included continuous-valued gamma
radiometrics, the DEM and several terrain derivatives (Table 1).

In total, an additional sixty locations (30%) were sampled for valida-
tion, undertaken as a separate, independent sample set to the calibration
sampling to provide an independent or external validation process (Brus,
2010). Six locationswere sampled fromeach of ten clusters, totalling sixty
sample sites. The FKM clusters (covariate strata) were generated using
the software ‘Fuzme’ (Minasny and McBratney, 2002) with an initial
fuzzy exponent parameter of 1.30. The Mahalanobis distance option
was applied due to unequal variances and associated correlations be-
tween each of the covariate data sources (Vrindts et al., 2003). The
fuzzy exponent was trialled for values between 1.30 and 1.10 until a
good distribution of membership probabilities was obtained, that is, at
an exponent value that resulted in a clear probability of a pixel belonging
to a single cluster. Optimal cluster numbers of between 5 and 20 were
also trialled. For each clustering configuration, FKM cluster output files
were generated which assigned a value of membership for each pixel be-
longing to each cluster. The highest membership value for any individual
cluster resulted in that cluster being assigned to that pixel, that is, only
one assigned cluster using the ‘maximum rule’. Theoretically, since an in-
dividual cluster with the highest likelihood of membership was assigned

http://www.saga-gis.org
http://www.saga-gis.org
http://www.saga-gis.org
http://www.saga-gis.org
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to each pixel, ‘hard’ clustering (i.e. hard k-means) could have also been
used; however this needs to be tested and compared for covariate
feature-space representativeness in future sampling exercises, to deter-
mine whether spatial membership boundaries would be altered, and
any consequential implications.

As the cluster map was provided to field officers to assist in reloca-
tion of problematic site locations, it was necessary to generate practical
field maps; ten clusters were determined as a good visual stratification
with fewer clusters over-simplifying the landscape, and greater than 10
becoming too visually ‘noisy’. There was little need to more rigorously
determine the optimum cluster number (by determining the partition
coefficient and classification entropy) as the clusters were used for a
sampling design stratification of covariates, and not modelling pur-
poses. However, the FPI (Fuzzy Performance Index) andMPE (Modified
Partition Entropy) values obtained from the Fuzme outputs (which
should both be close to zero for a good Fuzzy k-mean design (Odeh
et al., 1992)) were also considered to ensure that both values were
both relatively small in the final clustering design, when compared
against other fuzzy exponent/cluster number calculations.

3.5. Midlands sample design (training and validation)

Fuzzy k-means stratified sampling was also used to locate 270 sites
for the 27,000 ha Midlands area. Weakly correlated covariates used in
a sampling design can lead to suboptimal representation (Brus et al.,
2006); therefore the most important covariates were determined from
preliminary analysis of theMeander data for the targeted soil properties
using a step-wise linear regression (JMP software) and used in the FKM
clustering. Site coordinates were determined such that 27 randomly se-
lected locations were sampled from each of ten derived cluster types. A
further 8 locations were sampled from each cluster type to provide an
additional 80 sites for validation. Validation sampling was undertaken
concurrently with calibration sampling to reduce time, travel resources
and duplication of field effort.

3.6. Field sampling locations selected with fuzzy k-means

The field map provided covariate clusters (strata) which allowed
physically impractical sites to be re-located within clusters to more
Fig. 2. Midlands FKM clusters and sample locations.
accessible locations, while still maintaining the same number of sam-
ples from each of the cluster types (Fig. 2). Locations perceived to be in-
accessible (e.g. vegetation, stock-yards, and dams) (and those that could
not be identified by the available spatial data layers for preliminary
masking from the covariate layers) were initially identified and shifted
within required clusters using a desktop GIS process, to generate a ‘re-
laxed’ sampling approach, as opposed to the ‘strict’ pre-determined lo-
cation approach. Site locations were established in the field using a
regular GPS (with approximately 2 to 5 m precision) linked to a field
laptop with GIS and appropriate spatial layers for guidance. A 30 m
radial ‘tolerance’ was allowed for each location, where field staff
could sample if sampling at that exact location was not possible. This
corresponded to themodelling resolution, as it was not expected to sig-
nificantly change covariate distribution values, as adjacent pixels should
have very similar covariate values. The GIS and GPS guidance was used
to visually provide navigation to the pre-determined sampling locations
and a visual means to remain within the designated cluster for inacces-
sible sites.When not a viable location the field officers sampled as close-
ly as possible to the original coordinates, ensuring that they remained
within the designated cluster of the original point. For completely inac-
cessible cluster areas, sites were manually relocated to an alternative
spatial cluster of the same type but in another geographical location,
to retain stratification. New coordinates and access constraint were
recorded.

3.7. Field sampling and soil analysis

Sampleswere taken using a 50mmdiameter percussion soil corer to
a depth of 1.5 m and sub-sampled by horizon. Cores and surrounding
landscape position were described according to Australian Soil and
Land Survey guidelines (National Committee on Soil and Terrain,
2009). Spectral-scanning (MIR) of all training and validation samples
wasundertaken by CSIRO Land&Water andDPIPWE to predict required
soil properties. Fifteen percent of scanned samples were selected and
analysed for chemical properties at CSBP Laboratories in Western
Australia to provide calibration data for soil property predictions. Full
analyses of each sample included pH, EC, exchangeable cations, N, P, K,
organic carbon, and particle size distribution.

3.8. Statistical analyses

Sample site covariate distributions for the FKM clusters were com-
pared to the overall covariate distribution using a range of metrics (i.e.
the sample slope density, mean, inter-quartile range, median and stan-
dard deviation, along with the frequency distribution shape, skewness
and kurtosis) to determinewhether the variance from the full covariate
populationwas acceptable and comparable to the cLHS approach, as per
Brungard and Boettinger (2010). For the Midlands area, a cLHS sample
design was generated to compare the sampled covariate distribution
against the sampled covariate distribution of the FKM sampling design.
These distributions were further compared to the overall covariate dis-
tributions for the entire area. The initial FKM design and the overall
‘modified’ FKMdesign (the adjusted sample locations due to access con-
straints for both combined training and validation sites)were also com-
pared to determine whether the actual sample locations remained
representative of the covariate feature space. The training and valida-
tion sites were tested separately, along with a completely random
non-stratified design to determine whether the stratification effort
was warranted. Similarly, the Meander area covariate distribution was
compared for both the original cLHS design and those based on the ac-
tual visited locations to test for any deterioration of the hypercube once
the 30 m tolerance or contingency sites had been used.

A potential problem with this approach was that the area of each
cluster type was unequal, but an equal number of sites were randomly
allocated across each of the cluster types, meaning that some parts of
both the covariate feature space and the land surface space would be
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sampled more intensively than other areas. To test the consequences of
this, a validation sample design, based on a random-stratified sample of
the FKM covariate stratum was generated and tested using a sample
density proportional to cluster area. The spatial area of each cluster
type was calculated using GIS and converted to a percentage of the
total area; this percentage was then applied to the total sampling site
total to determine how many sites were to be located randomly in
each cluster type. This would ultimately give an indication whether a
more spatially proportional sampling density could be achieved (with
respect to cluster area), without compromising the representation of
the covariate feature space.
4. Results and observations

4.1. Field constraints

Sampling at the designated coordinates was impractical at many
locations in the Meander and the Midlands study areas due to:

1. Physical or consensual access — either due to not being possible to
navigate to the exact location due to physical barriers such as tracks,
gates, and terrain,within a reasonable time-frame; or actually denied
access consent by the land owner.

2. Cropping— the sitewas currently under a high-valued crop requiring
site relocation to avoid damage and potential yield losses.

3. Disturbance — the site was physically disturbed or contaminated by
infrastructure construction and earthworks, fertilizer stock-piles
etc., therefore not a true indication of surrounding pixels, or identifi-
able in spatial land-use layers.

4. Infrastructure — impediments to core sampling such as tracks,
fences, underground cables, and drainage pipes, which were beyond
the resolution of a desktop identification process.

5. Livestock— access not possible or denied to avoid disturbance of live-
stock at critical times, such as lambing.

6. Stone — too physically stony to sample without damage to
equipment.

7. Terrain — too physically rough or steep to allow safe drilling rig
access, and compliance with departmental safety policy.

8. Biosecurity and conservation— a high-risk biosecurity or biodiversity
area with the potential for spread of weeds, pathogens, or damage to
vulnerable or threatened species.

Table 2 summarises the access constraints experienced during field-
work; themost common being limited access (either physical or denied
entry) and inaccessible terrain.
Table 2
Access limitations— reasons for moving sample locations.

Access limitation Count Limitation %

Access 56 21
Biosecurity 0 0
Crop 21 8
Disturbed 5 2
Infrastructure 29 11
Livestock 1 0
Stone 33 13
Terrain 48 18
Vegetation 21 8
Wet 48 18
Total not accessed 262
Total sites 589
% sites not accessed 44
4.2. Sample design comparisons (Midlands)

Supplementary data Table 1 shows a comparison in the Midlands
area between each soil sampling design (combined training and valida-
tion) against the full covariate population and a percentage difference
against mean, median, inter-quartile range (IQR), and other statistical
outputs. The ‘field modified’ or ‘relaxed’ FKM sample design showed
the distribution statistics for the actual sample locations after shifting
any proposed site locations due to access limitations. The percentage
difference between each design and the full covariate distribution for
all metrics was generally lowest for the field-modified FKM design,
followed by the cLHS. For example, the percentage difference of median
values for FKM-final was 1.28, compared to 4.06, 8.23 and 0.85 for the
FKM-proposed, random sample and cLHS values, respectively. Mean
values generally agreedwith this; however,medians are used here for ex-
ample comparisons as they are less influenced by outlier values. There
was a similar pattern for themedian values for MrRTF, slope, topographic
wetness, total gamma dose, thorium and potassium. The random sample
was generally less representative of the tested covariates, as demonstrat-
ed by the percentage differences to the other sampling approaches for all
metrics. Elevation (DEM), for example, shows a percentage difference of
−18.85% for median MrRTF, which was as low as −2.36, 4.67, and
−7.06 for FKM-final, FKM-proposed, and cLHS respectively.

Fig. 3 shows the generalised combined training and validation fre-
quencydistribution curves for each sample design against the full covar-
iate population, along with quantile box plots. The density curves
basically illustrate that the cLHSmost closely followed the full covariate
distribution; however all sample designs showed a reasonable repre-
sentation of covariate distribution, following the same general distribu-
tion shape.

Supplementary data Table 2 shows the comparison of the separate
training and validation sampling statistics against the entire covariate
population. Generally, the training FKM design followed a closer repre-
sentation of the full covariate distribution to the validation sampling
with the exception of plan curvature, aspect and valley-depth. Impor-
tantly, subjectively moving sites within clusters did not overly reduce
the representation of the covariate distribution, for example, median
values between the proposed and final training designs were 311.49
and 310.90 for elevation respectively, and an unchanged 0.82 for both
proposed and final mid-slope position median values.

Fig. 4 and Supplementary data Table 3 show a frequency distribution
comparison of the Meander East cLHS design against the full covariate
distribution, and any deterioration of the sample integrity due to
using contingency sites when access was constrained. The distributions
illustrate that therewas negligible deterioration of the cLHS design once
contingency sites had been used or sites moved within the allowable
30 m tolerance, i.e., the design was representative of the covariate fea-
ture space, following the same general shape. Similarly, insignificant dif-
ferences between the mean, median, IQR, skewness and kurtosis values
suggest that there was negligible deterioration in sample representa-
tiveness between the proposed and final cLHS locations, for example,
the DEM median values were 165.42 and 163.78 for the proposed and
final locations respectively, and no change in median value for radioac-
tive potassium (k percent).

Supplementary data Table 4 shows the frequency distribution statis-
tics where sample density was adjusted proportionally to FKM cluster
area size. These were generally close to the covariate distribution of
the un-adjusted FKM sampling design, with the exception of some
covariables, for example, valley depth having a median value of 60.14,
compared to 55.12 and 55.47 for the unweighted sample, and covariate
distribution respectively.

The supplied Google Earth ‘.kmz’ files show theMidlands final site lo-
cations (categorised by training and validation, ‘Sample_sites.kmz’) and
FKM clusters (strata) (categorised by cluster type, ‘FKM_strata.kmz’).
Background satellite RGB imagery also highlights the land use and terrain
variability throughout each study area.
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5. Discussion

5.1. Access constraints, and the need for sampling flexibility

Within the Midlands and Meander areas, sites not accessible within
a reasonable time frame and departmental occupational health and
safety guidelines were encountered at a rate of 44%. This is a substantial
(and surprising) proportion, which indicates that ‘strict’ sampling can
be problematic in intensively used areas where impediments to access
and physical sampling exist. Within the project areas themost common
form of access limitation was due to physical constraints such as locked
gates, fences, and tracks that survey staff could not negotiate within
reasonable efforts in terms of time, and drivinghazard (Table 2). This in-
cluded land owners who declined to participate in the project.

Departmental field policy specifies that staff health and safety are
mandatory. Field staff used a trailer mounted drill rig in excess of
3000 kg which also made access problematic in terms of bogging-
potential, stability on steep terrain, and potential paddock damage.
The most common constraints to safe towing of the drilling rig were
terrain (usually highly undulating, or steep landscapes) to allow safe ne-
gotiation, or site wetness causing vehicular traction problems. Other ac-
cess constraints were due to sites currently under cropping with entry



Fig. 4. Comparison of proposed Meander East cLHS covariate distribution against the final sample locations and full covariate distribution.
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denied by the farmer to avoid crop damage; site contamination or dis-
turbance, for example, stock camps deemed by the surveyor to bias
sampling results due to excessive nutrient inputs; infrastructure, such
as communication cables, drainage and water pipes; and vegetation
too thick to navigate. Physical sampling was also limited in areas of
high stone-content or outcropping. Locations that were too wet or
stony to sample were given a stone % estimate and drainage class
value (which were to be used as supplementary data for the DSM pre-
dictions of these soil variables). Many of the access constraints experi-
enced were not identifiable by spatial GIS layers or were beyond the
scale or resolution of the covariates used (for example, drainage lines),
and could not be excluded before the sampling design was generated.
Although some slope categories could have been removed from the de-
sign, these terrain issues were often encountered while traversing to
sample locations, which could not be determined directly from the GIS.

A physical map of clusters provided field staff visual guidance to
relocate a site as close as possible to the original coordinates.
Relocating the site within the same cluster (strata) ensured that
the site remained associated to that cluster, effectively maintaining
covariate stratification and reducing the risk that sampling distribu-
tion would become non-representative of the full covariate feature
space. The FKM cluster approach achieved positive feedback from
the sampling staff, and resulted in a substantial time reduction for
sampling (in terms of sites sampled per day), avoiding the need to
navigate to a completely new and alternative site as required with
a ‘strict’ approach (the alternative cLHS sites have the potential to
be on completely different land titles requiring time and resources
to find and contact new farmers, and navigate through a whole
new raft of potential sampling constraints).

5.2. Sampling design comparisons

The sample size used was 0.12% of the possible sample locations
from the 30 m grid (299,781 cells (covariate population), sample n =
350). From Fig. 3 it can be observed that the cLHS design best accounted
for the full covariate distribution with very little deviation from most
covariate population's mean, median, interquartile range (IQR), and
standard deviation. It also maintained the best curve ‘fit’ in terms of
skewness and kurtosis, i.e. it showed little variation to the shape, flat-
ness and distribution of the frequency distribution curves, and therefore
had the smallest deviation in the compared sampling design covariate
representation.

The FKM sample design,while not as close to the overall distribution
density as the cLHS,was generally a good fit, with a slight increase in dif-
ference between the median, mean, IQR, and distribution density
‘shape’ (Fig. 2 and Supplementary data Table 1). The mean, median,
variance, and curve density of the ‘modified’ FKM design (the final
sampling locations after being shifted) was a slightly poorer fit for
some covariates,while improved for others. The completely randomde-
sign (with no stratification), while still a good fit for some covariates,
performed poorest overall in comparison to the cLHS and FKM ap-
proaches with the greatest variance in terms of IQR, and more-so for
skewness and kurtosis (Supplementary data Table 1). This shows that
stratification is beneficial for the range of covariates used in this study.
For the Meander area, the proposed cLHS showed minor degradation
when compared to the final site locations, shifted due to access con-
straints (Supplementary data Table 3, Fig. 4). The mean, median, IQR,
skewness, and general non-parametric density shapes more closely
followed the full covariate distribution for the proposed sample design
than the final site location covariate distribution.

Ideally, the comparison of these sampling approaches should be un-
dertaken with replicates due to the strong random component in the
site selection in all methods. This was done for several replicates before
sampling to test the sensitivity of the covariate distribution of the select-
ed sites, and a visual estimate of spatial dispersion. Visual clustering of
sites was evident for some replicates in comparison to others; however
the covariate distribution remained relatively constant across replicates.
These results are not presented here due to the large amounts of data al-
ready produced in the supplementary data tables.

A potential weakness with the FKM design is that smaller clus-
ters have an equal number of samples to larger clusters. However
larger covariate clusters should intuitively have lower covariate dis-
tribution variance per unit area, therefore requiring fewer samples
per unit area. Complex terrain comprising smaller area clusters
should have greater covariate distribution variability per unit area
and will therefore have a higher rate of samples required per unit
area. In both project areas the smaller area clusters are located in
more topographically complex areas which require a greater sam-
pling density to fully cover the covariate distribution, whereas the
larger flood-plain areas have less variability per unit area (see
Fig. 2). Supplementary data Table 4 shows a simulation sample de-
sign generated such that a proportional number of sites were locat-
ed by the spatial cluster size. The site covariate distribution
statistics had a greater difference to the full covariate distribution
statistics for most covariates (with the exception of the DEM, mid-
slope position, MrRTF and valley depth), when compared to the
proposed (un-weighted) FKM design used for sampling the Mid-
lands area. This suggests that using a sampling density proportional
to cluster size would generally not improve sampling the covariate
feature space, but could potentially improve proportional sampling
of land-surface ‘space’, which would be of more importance to
design-based sampling.
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5.3. Comparison of training and validation designs

Project time constraintsmeant that validation sampling could not be
delayed until initial soil property predictions had been generated. Con-
sequently, validation sampling was undertaken simultaneously with
training sampling, using the covariate FKM clusters as strata, rather
than stratification of generated quantitative soil properties or class sur-
faces. Validation field sampling, co-incident with training sampling,
greatly reduced overall time and associated costs for the Midlands
area by avoiding duplication of field effort. Validation sites, calculated
in number as an additional 30% of training samples and randomly se-
lected by computer from each cluster, were compared against the full
covariate distribution (Supplementary data Table 2). Although general-
ly showing a greater variance from the full distribution than the calibra-
tion sampling, the sample locations provided reasonable covariate
distribution replication. The higher variance is explained by the lower
sampling density, with less opportunity to sample the entire covariate
range.

Due to the documented access limitations itwas not possible to sam-
ple all locations (pixels), or identify and mask inaccessible sites of the
study area using desk-top imagery analysis. The validation approach
used in this study is therefore not a true probability sample as not all lo-
cations have an equal chance of being selected, which will reduce the
ability to provide statistical estimates of map quality, providing instead
a model-based estimate of quality. In effect, this validation approach
does not provide a true measure of statistical accuracy, but quantifies
the prediction error at each validation point (Laslett 1997) which can
be averaged to give an overall model prediction error.

The ability to undertake a probability sampling design is question-
able in an operational sense as it is unlikely in any ‘real-world’ situation
that every locationwill be equally available to be sampled. It is impossi-
ble to compute these inclusion probabilities, as inclusion likelihood
would not be known until all locations are attempted to be sampled.
Subsequently, it was opted for a pragmatic solution to this perceived di-
lemma by samplingmore sites than intentioned for DSMmodel calibra-
tion; using additional sampling resources for model validation. The
validation sample is considered independent of the calibration samples
in the sense that they were not included in the model fitting. The oper-
ational advantage is realised by the fact that both calibration and valida-
tion samples can be retrieved together in the same sampling campaign.

5.4. Potential alternative future sampling approaches

The navigation time to locations within the ‘strict’ design was found
to be themain impediment to progress in intensively used areas such as
theMidlands andMeander regions of Tasmania. The described ‘relaxed’
approach increased the number of sites able to be sampled per day,
however, the sampling-rate increase is difficult to quantify due to the
different drilling conditions between Meander and Tunbridge. Project
time-constraints would not allow full testing of variations to the meth-
odology before sampling was undertaken; for future sampling, further
investigations into cluster-size sample density and whether optimisa-
tion of spatial distribution is warranted, and how this might affect the
representation of the sampled covariate distribution, and any advan-
tages to final DSM predictions.

Importantly, this case study and the documented operational prob-
lems encountered ultimately highlights the need for a more adaptive
approach such as the flexible LHS methodology proposed by Clifford
et al. (2014). The approach uses pre-determined-coordinate LHS
sampling in a remote Queensland setting, with alternative nearby sites
suggested when the first choice site sampling is not possible, while
maintaining the hypercube integrity covariate distribution, distance to
formed tracks and spatial spread. The 40 ha alternative area criteria
used in the flexible LHS simulation would need reducing for Tasmanian
conditions due to significantly smaller property holdings, and more in-
tensive infrastructure than the Queensland example. These smaller
holdings exacerbate sampling delays in situations where alternative
sampling locations are made available outside of current property
boundaries; usually a completely different land-holder will need
contacting for access permission, taking time to find and make contact
during daylight hours. Obtaining contact details for all landholders in a
sampling area is impractical due to Tasmanian privacy legislation, and
the format of contact availability by telephone companies or land title
authorities (with many property owners listed as a registered business
name only). The decision to use this approach required consideration of
whether it was more beneficial to have an optimal sampling design of
fewer sites (due to the slower sampling rates), or amuch larger number
of sites in less optimal locations; it was decided to use the latter in the
interests of obtaining more training data for model formation. The
FKM approach used for this DSM sampling example was a pragmatic
model-based concession that was able to improve soil sampling rates
while still representing the covariate feature space. However for future
sampling campaigns, the Clifford et al. flexible LHS sampling will be
tested alongside this approach as a measure of covariate distribution,
sample spread and field practicality to determine the best possible com-
promise between statically valid model-based, but operationally feasi-
ble soil sampling for DSM.

6. Conclusions

Analyses of the project sampling component demonstrated that the
cLHSdesign for theMidlands area showed thebest overall sample based
on the distribution of the available covariates, but led to operational
sampling problems due to the access constraints. However, the ‘relaxed’
FKM clustered approach provided an acceptable representation of the
available covariates, while the clusters (used as a field map and stratifi-
cation of the sampling area) provided a guide to where non-accessible
sample locations could be moved such that the sample number
from each covariate stratum was maintained. The approach was able
to improve sampling progress rates when compared to the strict cLHS
approach, although not quantifiable in this project due to differing sam-
pling conditions.

An operational digital soil mapping (DSM) sampling process needs
to be a compromise between operational practicality, and statistically-
sound sampling that should give the best opportunity for predictions
based on the full covariate range. Although some subjectivity-bias
may be introduced, the ‘relaxed’ FKM approach can allow a pragmatic
and time-saving operational sampling strategy, which was shown to
still follow a good representation of the available environmental vari-
ables. The relaxed FKM strategy was therefore considered a reasonable,
‘real-world’ sampling compromise suitable for time-constrained DSM
operations in Tasmania, which could be applicable where a model-
based validation of map quality is acceptable. However, future opera-
tional and ‘real-world’ testing of more statistically robust methods is
still required.
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