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In this study, two approaches for spatial data extrapolation are investigated. The intention here is to predict at
fine spatial resolution, total gamma radiometric counts across a large mapping extent (recipient site) on the
basis of finely resolved information collected from a nearby donor site. The extrapolation methods used were a
digital soil mapping (DSM) regression model approach and a multivariate multiple-point statistical (MPS) ap-
proach. Qualitative interpretation of the results from both extrapolation approaches across the recipient site in
the LowerHunter Valley, Australia (area≈ 220 km2) shows promise in terms of highlighting knowngeochemical
and physical variations of soils in this area. The extrapolated map was evaluated in a small portion of the study
area (area≈ 4 km2) where similar high-resolution gamma radiometric data were available. Results show com-
parable performance of both approaches where a root-mean-square error of 87 ppm was found. A concordance
correlation coefficient value of 0.04 was found for the DSM approach, but higher for the MPS approach (0.16).
Under the Homosoil framework, where soil point data and mapping are sparse, either method investigated in
this study would be suitable as a ‘first-cut’ approach for developing a comprehensive soil information system
in those areas.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

One of the issues in developing high-resolution global and national
spatial soil information systems of consistent coverage is reconciling
some of the disparity between those areas that have well developed
soil information resources with those that are comparatively under-
developed (Minasny and McBratney, 2010). To address this disparity,
most soil scientistswould advocate a rebirth of soil survey andmapping
programmes to rival the effortsmade internationally during the early to
mid-20th century (Brevik and Hartemink, 2010) in the areas where
information is currently sparse. While appealing, we need to permit
ourselves to consider alternative and possibly less costly approaches;
with one being model extrapolation, to which is the focus of this
investigation.

The concept of Homosoil (Mallavan et al., 2010) has particular rele-
vance in that regard, because it aims, through similarity assessment, the
evaluation of which soils (unknown) are similar to other soils (known).
For example, if one specified area has very detailed soil mapping (donor
site), and has similar soil forming factors to another area that has little to
no soil mapping, then it may be possible to extrapolate the information
P. Malone), s.jha@unsw.edu.au
,

ormodel from the detailed area to the sparse area (recipient site). These
ideas have been around for a while; for example, Lagacherie et al.
(1995) implemented an extrapolation concept in Francewhere soil pat-
tern rules were acquired from a reference area or donor site and applied
across a wider area where a lower intensity of survey had been
achieved. The extrapolation of data is a general concept, and one that
can be applied for other variables that are not exclusively soil attributes
or classes. For example, proximal soil sensing instruments are able to
collect very detailed information about the geochemical and geophysi-
cal properties of soils (with gamma radiometrics and electromagnetic
induction as a few common examples).

Such proximally sensed information has been demonstrated to be
invaluable for soil studies in terms of digital mapping and precision ag-
riculture (Viscarra Rossel et al., 2010). However, their application is
commonly restricted to farm and field spatial extents. Using them at re-
gional and larger extents is rare because it is difficult and costly tomain-
tain the same sampling frequency at these scales as for field and farm
extents. This issue of practicality has prompted a few recent studies to
use proximal soil sensing instruments for regional scale studies. For ex-
ample, both Viscarra Rossel et al. (2014) and Stockmann et al. (2015)
developed efficient methods of traversing a landscape that dually at-
tempt tominimise the time spent in thefield yetmaximise the potential
to capture the spatial soil variation at their scale of investigation. In a
similar context, Podgorski et al. (2015) demonstrated the value of inte-
grating proximal sensed geophysical data – thatwas collected at limited
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sites –with airborne sensed data for constraining and delivering amore
detailed hydrological and geological model across a large spatial extent
of Botswana (Okavango Delta).

In this study we approach the problem of delivering detailed
mapping differently by investigating the efficacy ofmodel extrapolation
through the use and subsequent comparison of two contrasting
(extrapolation) approaches. The first is using a digital soil mapping ap-
proach (McBratney et al., 2003) as suggested in Mallavan et al. (2010).
The second is via multiple-point statistics, in particular the Direct Sam-
pling algorithm as described in Mariethoz et al. (2010).

The first extrapolation method hereafter referred to as the DSM ap-
proach, entails the following steps. From the areawith detailed informa-
tion, first the target variable of interest is decided upon. Using existing
point observations (for which there should be many), or sampling di-
rectly from an available raster of the property of interest, these data
are then intersected with a portfolio of spatially exhaustive environ-
mental covariate data. This information could be retrieved from an
available digital elevation model, remote sensing data platform or
some other similar source (Mulder et al., 2011). A DSM model is then
constructed, which is essentially a numerical model that relates the in-
formation on the variable of interest to the environmental factors. The
constructed model is then applied to the recipient site. Grinand et al.
(2008) used a DSM approach in France for mapping soil types to inves-
tigate the extent to which a model yields a valid prediction. The accura-
cy of predictions made for the extrapolated area (recipient site) was
found to be lower than that made in the training or donor area. Intui-
tively, this type of result is expected because of the complexity of spatial
soil variation, and the impossibility of matching soil forming factors be-
tween donor and recipient sites. The results from Grinand et al. (2008)
are encouraging from the perspective that such an extrapolation ap-
proach would be useful to fill the gaps in present soil map coverage
and to increase efficiency of ongoing soil survey to target areas of
greatest uncertainty.

Multiple-point statistics (MPS) (Guardiano and Srivastava, 1993)
has not before been used in the context of Homosoil. In fact, there
have only been a limited number of soil science studies that have ex-
plored MPS, with Meerschman et al. (2013a) and Meerschman et al.
(2014) being a few examples. Originally developed in the field of geo-
logical reservoir modelling, MPS represents an alternative to two-
point statistics such as that of variogram modelling and subsequent
kriging, and even DSMmodelling, with recent applications in hydroge-
ology (Chugunova and Hu, 2008; Jha et al., 2014), geophysics (Liu et al.,
2004; Comunian et al., 2014), and remote sensing (Ge and Bai, 2010;
Mariethoz et al., 2012). A stated advantage ofMPS is its ability to capture
complex patterns and connectivity in data, which is difficult to do with
two-point statistics (Mariethoz et al., 2010). In statistical literature,
Markov Random Fields serve as the statistical construct that underpins
MPS, e.g. Besag (1986) and Emery and Lantuéjoul (2014). Central to
MPS, is the training image, which is a conceptual image of the expected
spatial structure of the variable to be predicted. The idea of training
images is that there may exist another site – a soil analogue in this
case (i.e. the training image) – where large amounts of information
are available, and fromwhich it is possible to learn spatial or textural in-
formation. This idea is very much in line with the concept of Homosoil,
making MPS an interesting candidate technique in this context. Spatial
patterns learnt from a training image were particularly relevant for
Meerschman et al. (2014) in processing proximal soil sensor data
given a repeating polygonal fossil ice-wedge soil pattern. Extending
MPS to include multivariate training images (Jha et al., 2013a, 2013b,
2015) provides an opportunity to explore its broader application for
digital soil mapping efforts, and consequently for Homosoil. The hy-
pothesis here is that environmental covariates together with detailed
(soil) mapping from the donor site can be used as training image to in-
form the spatial pattern of mapping at the recipient site.

The subsequent investigation is a scoping study and details the use
of the above-described methods of extrapolation for mapping the total
count gamma-ray emission from soils across the Lower Hunter Valley,
NSW (recipient site), given some existing detailed survey from the
same area (albeit at a much smaller spatial extent). We firstly describe
the study area and data used in this study. Secondly the theoretical un-
derpinnings of DSM and MPS are described, followed by description of
the procedures for implementing each of the approaches. Lastly, subse-
quent results and outputs are presented togetherwith a broader discus-
sion of their significance.
2. Materials and methods

2.1. Study area

The study area is located in the Lower Hunter Valley, NSW, Australia
(32.83°S 151.35°E), approximately 140 km north of Sydney, NSW,
Australia, and covers an area of approximately 220 km2 (Fig. 1). This
area is referred to as the HunterWine Country Private Irrigation District
(HWCPID). This area is situated in a temperate climatic zone, and expe-
riences warm humid summers, and relatively cooler yet also humid
winters. Rainfall is mostly uniformly distributed throughout the year.
The area receives on average just over 750 mm of rainfall annually
(Australian Government Bureau of Meteorology, 2014). Topographical-
ly, this area consists mostly of undulating hills that ascend to low
mountains to the south-west. The underlying geology includes predom-
inantly Early Permian siltstones, marl, and some minor sandstone
(Hawley et al., 1995). Other parent materials include Late Permian silt-
stones, and Middle Permian conglomerates, sandstones and siltstones.
Soils are quite variable, but in general terms are weathered mixed kao-
linitic–smectitic type soils.
2.2. The data

The recipient site for this study is the entire HWCPID. In 2013 an area
of 15 km2 was surveyed using a ground-based gamma-ray detector
(Stockmann et al., 2015) to produce raster maps of the radiometric
ROIs (regions of interest) with a raster cell size of 25 by 25 m (shown
in yellow in Fig. 1). Specifically, that work entailed driving across the
landscape following a network of pre-determined transects. A
gamma-ray spectrometer was attached to the vehicle which recorded
on-the-go radiometric signals being emitted from the soil surface. On
average, the ‘sampling’ density of the on-the-go proximal sensing was
45 points per hectare. For the work of Stockmann et al. (2015), the
data was collected for total gamma-ray count and the ROIs that
corresponded to Potassium, Thorium, and Uranium. All data were
mapped in the units of counts-per-second (cps). The mapped outputs
from Stockmann et al. (2015) represent the donor site in this study —
they are detailed data that need to be extrapolated to the entire
HWCPID. It is possible that this extrapolated information could be
used in the future for updating existing soil mapping, and more gener-
ally for digital soilmapping studies in this region such as the refinement
of soil and landscape regions or terrons as described in Malone et al.
(2014a). This study focuses specifically on the mapping of the total
gamma-ray counts rather than each of the individual ROIs.

Both extrapolation methods (DSM and MPS) make use of spatially
exhaustive covariate information derived principally from a digital
elevation model (25 m × 25 m spatial resolution). In total 7 environ-
mental covariates were used in this study: elevation, altitude above
channel network, incoming solar insolation, mid-slope position, multi-
resolution valley bottom flatness, terrain wetness index, and slope.
The processing of the digital elevation model (DEM) to derive these
additional terrain-based variables was performed using SAGA-GIS
(System for Automated Geoscientific Analyses, http://www.saga-gis.
org). Maps of each of the covariates are shown in the supplementary
material associated with this manuscript.

http://www.saga-gis.org
http://www.saga-gis.org


Fig. 1.Grey colouredmap showing the boundary extent and roadnetwork of theHunterWine Country Private IrrigationDistrict (HWCPID) situated in the LowerHunter Valley. Geograph-
ical situation of HWCPID is displayed in relation to the major Australian cities of Brisbane, Sydney and Canberra. On the map, areas shown in grey, yellow and blue colour indicate the
recipient, donor, and validation sites respectively.
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2.3. How similar are the donor and recipient sites?

A key component of Homosoil is to evaluate via a taxonomic dis-
tance measure, the similarity of environment between the recipient
site and potential donor sites. The motive in Homosoil is that the
donor site selected has the lowest possible taxonomic separation to
the recipient site compared to all other candidate donor sites. In the
case of this study, the donor site has already been determined. Therefore
it is necessary to evaluate the question of how similar the donor site is to
the recipient site. In a normal situation, predictions would only be gen-
erated where the similarity passes some pre-determined threshold
criteria.

In this study, taxonomic distance is quantified in terms of the
Mahalanobis distance (Mahalanobis, 1936), where each pixel location
of the recipient area (whichwill have a vector of values that correspond
to each of the environmental covariates) is compared to each pixel
(vector of environmental covariate values) across the donor site. As
was described above, 7 covariates (all derived from a digital elevation
model) were able to be sourced for this study. In mathematical terms,
the matrix of environmental covariates for the recipient area can be
defined as R which in this study is a 335,838 × 7 matrix, where each
row is a pixel location and each column holds corresponding values to
each given environmental covariate. Similarly D is defined as the
17,853 × 7 environmental covariate matrix for the donor site. At each
pixel of the recipient area, e is created which is the vector of squared
Mahalanobis distances a single pixel in the recipient area has to each
pixel of the donor site D. The Mahalanobis distance requires a covari-
ance matrix of the input variables (environmental covariates) which
was estimated as the covariancematrix of R. For simplicity, a single tax-
onomic distance estimate is calculated at each pixel as the mean of the
nearest 500 distance calculations of e. A threshold distance of 6.5 was
chosen as the cut-off between whether a pixel was similar in terms of
its environment covariate to the donor site. This value was determined
on the basis of the distance calculations within the donor area, where
6.5 was the 97.5% percentile of taxonomic distance measurements
across this site. Therefore, a low value (i.e. less than 6.5) indicates that
donor and recipient sites are relatively similar.
2.4. Theory and implementation

2.4.1. Extrapolation approach based on digital soil mapping
For some background, digital soil mapping (DSM) is: “the creation

and population of spatial soil information systems by numerical models
inferring the spatial and temporal variations of soil types and soil prop-
erties from soil observation and knowledge from related environmental
variables” (Lagacherie andMcBratney, 2007). Formalised byMcBratney
et al. (2003), DSM uses the clorpt formulation of Jenny (1941) to de-
scribe the factors of soil formation. This is not for explanation, but for
empirical quantitative descriptions of relationships between soils and
spatially referenced environmental data, with a view of using these as
soil spatial prediction functions. This is called the “scorpan” model, and
is expressed as:

Sc x; y;� t½ � or Sp x; y∼t½ � ¼ f ðs x; y;� t½ �; c x; y; ∼t½ �; o x; y;�t½ �; r x; y;�t½ �;
p x; y;�t½ �; a x; y;�t½ �; nÞ

ð1Þ

where:

Sc soil class
Sp soil property
s soils, other attributes of the soil at a point
c climate, climatic properties of the environment at a point
o organisms, vegetation, or fauna, or human activity
r topography, landscape attributes
p parent material, lithology
a age, the time factor
n space, spatial position
t time (where t is defined as an approximate time)
x,y the explicit spatial coordinates
f function or soil spatial prediction function (SSPF).

In this study a rule-based model called Cubist (Quinlan, 1992) was
used to regress the target variation (total gamma count) with the
sourced environmental covariates (which were principally derived



246 B.P. Malone et al. / Geoderma 262 (2016) 243–253
from a digital elevationmodel only). The Cubistmodel is similar to a re-
gression tree model in the sense that data are partitioned into smaller
subsets based on the target variable and its relationship with the envi-
ronmental covariates. However, the terminal nodes are multiple linear
regression equations rather than predictions. A sensitivity analysis
was performed using different sample sizes of the total gamma ray
count map to establish the regression model. Sampling 25% of map
pixels was found to result in similar model parameters to those models
fitted usingmore or all the available pixels. A sample of less than 20% of
the map pixels resulted into higher occurrences of dissimilar models.
The Cubist model was then applied across the whole HWCPID or recip-
ient site.

Prediction uncertainties were defined empirically from the data
used for fitting the extrapolation model. Uncertainty is expressed
in the form of two quantiles of the underlying distribution of model
error (residuals) which has previously been applied in hydrological
(Shrestha and Solomatine, 2006) and soil (Malone et al., 2011) stud-
ies. The underlying distribution of errors was evaluated through
leave-one-out cross validation (LOCV). Because a Cubist rule-based
model was used in this study, the distributions of residuals were de-
fined for each ruleset, following a partitioning of the data (according
to the ruleset each data point belonged to). Within each ruleset,
LOCV was performed such that n number of Cubist models (n being
the number of contributing data to the ruleset) was fitted, with the
contributing model set being composed of n − 1 data. With each
fitted model, a different observation is removed each time. The
model residual for the removed data however is evaluated by mak-
ing a prediction for that observation using the fitted model, then cal-
culating the subsequent residual (observed value − predicted
value). For each ruleset, the uncertainty is expressed as a 90% predic-
tion interval; which means that the lower 5% and upper 95%
quantiles of the empirical model residual distribution are recorded.
This empirical method of uncertainty quantification is described in
Malone et al. (2014b). Upon extrapolation of the scorpan model to
the recipient site, each pixel was interrogated to determine which
ruleset it belonged to, based on the vector of covariate information
at that pixel, and the partitioning criteria of the cubist model. With
this defined, the associated rule prediction limits were added to the
scorpan model prediction, resulting in a 90% prediction interval at
each pixel in the recipient area.
2.4.2. Extrapolation approach based on MPS
The MPS methodology adopted for digital soil mapping extrapola-

tion is based on the Direct Sampling (DS) geostatistical approach. The
description of DS is presented in Mariethoz et al. (2010) and its recent
application in hydrological application with multivariate training im-
ages and fusing dense and scarce data can be found in Mariethoz et al.
(2012) and Jha et al. (2013b). Here we briefly present themain compo-
nents of the approach.

The DS algorithm uses a training image, conditioning data, and
simulation grid. The nodes of the simulation grid are visited accord-
ing to a random path and a pattern is defined by its neighbouring
values. When conditioning data are available, they are incorporated
into the simulation grid by appending the value to the grid node it
is spatially closest to. Subsequent spatial patterns (neighbourhood)
from the DS have to be coherent with the conditioning values. A pat-
tern with similar neighbourhood is searched in the training image,
and a distance representing the mismatch is calculated between
the patterns in the simulation grid and in the training image. If the
distance is below a given threshold dth, the pattern from the training
image is pasted in the simulation grid. The newly simulated value is
then added to the available conditioning dataset and used for subse-
quent simulations. Sometimes there may not be any initial condi-
tioning data, in which case results in an unconditional simulated
value being made. As the simulation grid fills out with values, the
number of conditional values for future simulation increases
accordingly.

The algorithm used to search the pattern in the training image is as
follows: letU denote a vector of coordinates for a pixel in the simulation
grid and V coordinates of a value in the training image. Z(U) is the var-
iable to be simulated. NU is the ensemble of the n closest known pixel
values of U either conditioning data or previously simulated values.
For the case of a single variable the local neighbourhood of U is defined
as NU=[Z(U+h1),Z(U+h2),…Z(U+hn)], where h is the lag vector
between U and its neighbours. The idea of this process is to find a
location in the training image that has a neighbourhood NV=
[Z(V+h1),Z(V+h2),…Z(V+hn)] similar to NU. Both neighbourhoods
have the same lag vectors. Anymismatch between NU andNV is quanti-
fied by a distancemeasure d[NU,NV]. As soon as amismatch value below
the threshold of dth is found, the value Z(V) in the training image is
posted in the simulation at location U and the simulation proceeds
to the next unknown pixel value. For continuous variables, a normal-
ised Manhattan distance is used to compute the mismatch between
neighbourhoods:

d NU;NV½ � ¼ 1
n

Xn

i¼1

Z Uið Þ−Z Við Þj j
max
VϵTI

Z Vð Þ− min
VϵTI

Z Vð Þ ϵ 0;1½ �: ð2Þ

Here n is the number of nodes in the neighbourhood being com-
pared and TI is the training image.

In the case of a multivariate situation withm variables, the distance
between themultiple variables is defined in order tofind the pixel value
matching the neighbourhoods considering all variables together. The
result is that the sampled values have the same cross dependencies as
the multivariate training image. The number of neighbouring nodes nk
may vary for each variable k, where k = 1, …m. Thus for each variable

k the individual neighbourhood will be given as: NU
k ¼ ½ZkðUþ hi

kÞ;…
ZmðUþ hnk

kÞ�. The multivariate neighbourhood is the concentration of

all m individual neighbours: NU ¼ ½NU
1;…NU

m� . Mismatch between
such multivariate neighbourhoods is obtained by a weighted linear com-
bination of individual distances between univariate neighbourhoods as
given below,where the sum of wk is 1:

d NU;NV½ � ¼
Xm

i¼1

wk d NU
k;NV

k
h i

: ð3Þ

In this study, the training image(s) are derived from the donor site. It
consists of the 7 environmental covariate data sources detailed previ-
ously, together with the raster of the gamma total count, as shown in
Fig. 2. The simulation is performed upon each 25 × 25 m grid node of
the recipient site, and includes both the donor and validation sites.
The spatial resolution and extent of the simulation grid are identical to
that of the environmental covariates that were arranged for the recipi-
ent site. The conditioning data were the 7 environmental covariates
that have the full spatial coverage of the recipient site. These are
shown in the supplementary material of this research. Outside the ex-
tent of the donor site, the total count gamma is unknown and needs
to be simulated using MPS using both training and conditioning data.
This DS simulation in this case is the operative procedure for extrapola-
tion of total count gamma using multivariate MPS.

For the DS, we used a neighbourhood of 20 pixels. The distance
threshold dth was assigned a value of 0.1. In the distance calculation,
an equal weight of 0.125 was assigned for all of the training images.
For comprehensive discussion on how to select these parameter values,
readers are referred to Meerschman et al. (2013a, 2013b). 100 condi-
tional realisations were obtained with this setting from which the
mean at each pixel was estimated in order to obtain a single estimation.
The uncertainty of the predictions was expressed as a 90% prediction



Fig. 2. Training images used forMPS. Training images correspond to spatial information from thedonor site to be used for the extrapolation of total count gamma radiometric data. Training
images include: a) raster map of surveyed gamma radiometric total count, b) elevation, c) solar insolation, d) mid-slope position, e) multi-resolution valley bottom flatness (MRVBF),
f) slope gradient, g) altitude above channel network (AACN), and h) terrain wetness index (TWI).
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interval andwas estimated at eachpixel on the basis of the lower 5% and
upper 95% quantiles from the 100 simulations.
2.5. Validation

It is difficult to perform validation in the context of Homosoil
because by definition, the recipient site has little or no data against
which to check the quality of the predictions. In situations where
there is no data available, soil expert qualitative assessments
would only be feasible. However, for validation in this study there
occurs an additional landholding that has detailed gamma radio-
metric data that was collected and mapped (25 m × 25 m grid res-
olution) from a previous survey effort (Fig. 1, shown in green). The
mapped total count gamma data at this site (validation site) was
compared to the corresponding predictions and associated quanti-
fications of uncertainty from both extrapolation methods. The root
mean square error (RMSE) and concordance correlation coefficient
were used as goodness of fit criteria to assess the quality of the pre-
dictions, while the prediction interval coverage probability (PICP)
was used to determine the efficacy of the uncertainty estimates.
The PICP is simply the proportion of observations that are encapsu-
lated by the corresponding prediction interval. If the uncertainty
estimates have been reasonably defined, the PICP should result in
an estimate of 90% for a 90% prediction interval.
3. Results and discussion

3.1. How similar are the donor and recipient sites?

Fig. 3 illustrates that approximately 47% of the areawas estimated to
be similar to the donor site. This result indicates that there is limited ex-
trapolation ability of the donor site, to which has implications about the
certainty of the subsequent predictions, which is discussed further on.

3.2. Donor site

The gamma radiometric total count map of the donor site is shown
in Fig. 4a. In this area, the low values correspond to a widespread area
of marl parent materials — earthy deposits (indurated marine deposits
from the Permian) consisting chiefly of an intimate mixture of clay
and calcium carbonate (Stockmann et al., 2015). It is common that
carbonate-rich parentmaterials and soils formed from them are expect-
ed to have low radiometric responses (Dickson and Scott, 1997). High
values are related to a sedimentary parent rock of mudstones which ul-
timately weather to fine grained soils. Soils with higher clay content
generally have a corresponding high response in total radioelement
content relative to other soil with low clay contents (Dickson and
Scott, 1997).

For the DSM extrapolation, a Cubist model entailing three rule-sets
was defined. The rulesets were partitioned on the basis of threshold



Fig. 3. Map of Hunter Wine Country Private Irrigation District (HWCPID) indicating simi-
larity and dissimilarity to donor site on the basis of environmental covariates.
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values of altitude above channel network andmid-slope position. All of
the seven environmental covariates were used in each of the three
rulesets. The fitted cubistmodel was able to explain 65% of the variation
in the target variable within the donor site. Fig. 4b shows the resulting
map, and Fig. 4c is a scatter plot between the detailed (donor) mapping
and Cubist model predictions. The scatter plot shows some dispersion
around the 1:1 line for low and high values of the target variable and
their associated predictions (concordance = 0.43). As can be seen
from the map (Fig. 4b) it retains the same general spatial pattern
shown in Fig. 4a. Fig. 4d on the other hand highlights a more superior
pattern-matching than what was achieved from the DSM approach.
This map illustrates the mean of 100 simulations of the MPS algorithm.
Fig. 4e is the scatter plot between the detailed mapping and simulation
predictions where a concordance of 0.71 was observed. Fig. 5a shows
omnidirectional semi-variograms derived for each map from Fig. 4.
The shape of the semi-variogram of the predictions from both extrapo-
lations corresponds well with that of the observed data. The semi-
variance of the observed datawith increasing short-range separation re-
flects the short-range variability of gamma radiometric data in general.
The extrapolations on the other hand appear much smoother and are
indicated by the relatively lower slope of the semi-variograms about
the origin.

3.3. Recipient site

Bothmodel extrapolations upon the recipient site resulted in visual-
ly similar predictionmaps. Fig. 6a–b shows the final prediction and pre-
diction interval range respectively for the DSM extrapolation. Fig. 6c–d
shows the corresponding maps from MPS. A correlation coefficient of
0.67was calculated between bothmaps (Fig. 6a and c). At this large spa-
tial extent, total count values correspond broadlywith soil texturemap-
ping across this area (Malone et al., 2014a). High values generally
correspond with soils that have high clay content and vice versa. Yet
bothmaps also reflect the differences in soil geochemistry and topogra-
phy that is independent of soil texture. For example, both maps show
low radiometric counts to the south-west of the study area where
there is a significant region of marl presence (Malone et al., 2014a),
together also with thin and skeletal soils that occur here as well. Soils
containing the marl appear to be better delineated by the MPS predic-
tions, while the skeletal soils are better accentuated by the DSM predic-
tions. The south-western region of the study area is bounded by a small
mountain range (Brokenback Range), towhich contributes to the occur-
rence of the young and skeletal soils in this area. For other parts of the
recipient area, low radioelement values for both maps also correspond
broadlywithmarl occurrence andwith topographically features that in-
clude ridges and crestswhere shallow and skeletal soilswould generally
be found. Low and intermediate total count values also correspond gen-
erally with drainage lines where soils have a mixed pedogeneisis from
both alluvial and colluvial processes.

A divergent feature between the two extrapolation methods is the
magnitude of uncertainty as indicated by the prediction limit ranges
(Fig. 6b and d), where they are generally larger for the DSM extrapola-
tion than they are for the MPS extrapolation. One similarity however
is that where there is a high prediction range for MPS extrapolation; it
is equally as high for DSM extrapolation. This is an interesting observa-
tion because for the DSM method, the uncertainties are related to the
quality of the fitted Cubist model. The spatial pattern of the prediction
limit range for the DSM extrapolation reflects the differences in the
magnitude of uncertainty attributed to each ruleset (3 were defined in
this study) of the Cubistmodel. The uncertainty thus appears as discrete
areas of relatively high, medium and low prediction ranges. Across the
recipient area this has resulted in relatively lower uncertainties in the
depression areas of the landscape, compared to areas that are topo-
graphically positioned higher. On the other hand for MPS, the un-
certainties are an expression of the prediction variance attributed
to running multiple simulations of the MPS algorithm — they are
a simulation-derived measure of uncertainty as opposed to an
empirical-based uncertainty. Where there is a high prediction
limit range for the MPS extrapolation, it is a reflection of the fact
that there is a significant dissimilarity between the training
image and the areas where the extrapolation is made. This observa-
tion together with corresponding high prediction uncertainties
from DSM extrapolation corroborates with the map in Fig. 3 such
that those areas that are dissimilar in terms of their environmental
similarity to the donor site.

Efforts to minimise the uncertainty for either extrapolation method
may be facilitated using an identical approach, which is sourcing addi-
tional and/or alternative environmental covariates. As an example, in
the future there may be a detailed geology map that is developed for
the area, where currently the available mapping is too general and
does not add to the predictive power of DSM models. For the DSM ex-
trapolation, sourcing of additional covariates will aid in efforts to derive
a more accurate spatial model of the target variable that will by associ-
ation also reduce the magnitude of uncertainties. For MPS, considering
alternative training images will provide a diverse ensemble of
realisations and thus the uncertainty might be decreased. Emery and
Lantuéjoul (2014) indicate that the training image should be at least
of the same size as the simulation domain so that patterns and ranges
of values of the training image can be used in the simulation. Intuitively
however, if the training image has enough patterns or variability and
the recipient area is actually very similar to the donor area, then the
size of the training image may be irrelevant.

Another point for consideration in regard to MPS is that the uncer-
tainties will vary by modifying the threshold dth on the Manhattan dis-
tance used for accepting the image pattern for a given prediction. At the
moment, there is no unified way of determining the value of dth and
other parameters used in MPS simulation. One way is with a sensitivity
analysis, which will determine the influence of each parameter on the
uncertainty range. Since the focus of this manuscript is to explore the
possibility of using MPS in the context of Homosoil, we did not find it
necessary to carry out a complete sensitivity analysis of each parameter.
We relied on the guidelines provided in Meerschman et al. (2013a,
2013b) and the range of values used in previous studies e.g., Jha et al.



Fig. 4. Donor site maps of gamma radiometric total count (a) observed, (b) predicted using DSMmodel, (c) scatter plot of comparison between observed and DSM predicted total count,
(d) predicted using MPS, and (e) scatter plot of comparison between observed and MPS predicted total count.
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(2013a), Jha et al. (2013b) and Jha et al. (2015).We agree that it may be
possible to tune the values of parameters but we do not believe that it
would change the main findings of this paper.
Fig. 5.Omni-directional semi-variograms of the total count radiometricmaps for observed
data (black squares), MPS predictions (blue diamonds), and DSM predictions (red trian-
gles) at a) the donor site, and b) the validation site.
3.4. Validation site

The validation site provided a situation to independently assess the
quality of both extrapolation methods. Bearing in mind however, that
this validation is opportunistic (because some existing gamma radio-
metric is present here), and does not necessarily reflect the quality of
themapping across the entire recipient area. For an independent valida-
tion of themapping, a probability sample of themapping domainwould
be necessary. Fig. 7a shows the observed total count radiometric map
for this small site. Fig. 7b indicates on the map the areas which are sim-
ilar and dissimilar to the donor site. Approximately 50% of this site is
similar to the donor site. Fig. 7c–e shows the corresponding predictions
from theDSMextrapolation, the PICPmap— green indicates the areas of
the predicted mapping where the 90% prediction interval encapsulates
the corresponding observation, and a scatter plot of the DSM predic-
tions compared to the observations. The scatter plot marks are coloured
according to the similarity assessment with blue indicating similarity to
the donor site and red indicating dissimilarity. Fig. 7f–h shows the cor-
responding figures for the MPS extrapolation. For the DSM extrapola-
tion, the spatial pattern of the predictions roughly corresponds to that
for the observations. The associated scatter plot shows that there is
quite some dispersion around the 1:1 line. Comparing observations
with the DSM predictions a RMSE of 87 cps and concordance of 0.04
was found. When considering the similarity to the donor site, it was



Fig. 6. Recipient site maps of gamma radiometric total count using DSM extrapolation (a and b), and MPS extrapolation (c and d). Maps correspond to prediction and prediction interval
range for each extrapolation method. For MPS the prediction corresponds to the mean of 100 MPS realisations.
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found that the RMSE was 73 cps and 101 cps for similar and dissimilar
locations respectively. This is a subtle indication of the fact that extrap-
olation is more accurate in areas where there is an associated environ-
mental similarity to the donor site. While the DSM prediction interval
range across the recipient site roughly corresponds to areas of similarity
and dissimilarity; at the small spatial extent of the validation area, the
range is relatively homogenous regardless of the similarity assessment.
The averaged prediction interval range from DSM extrapolation was
217 cps. For theMPS extrapolation, there is a subtle difference in predic-
tion interval range where the average range in areas defined as similar
was 175 cps, while for the dissimilar areas the average was 191 cps.
The estimated RMSE between observations and associated MPS predic-
tions was also 87 cps; a concordance of 0.16 was also found. Breaking
this down according to the similarity, the RMSE was 62 cps and
106 cps for similar and dissimilar areas respectively. Overall, the MPS
map appears smoother than the DSMmap. This is because it is the out-
come of calculating the mean of the 100 realisations. Fig. 8a–c shows
maps from three randomly selected simulations to provide an example
that the outputs from each simulation can be quite different, and can
locally appear to be quite noisy. Calculating the concordance between
the observations and each of the 100 simulations, it was found to
range between 0 and 0.19. Fig. 5b shows the omnidirectional semi-
variograms of the radiometricmapping in Fig. 7, and provides an indica-
tion of the fidelity of spatial structure between observations and sub-
sequent extrapolation methods. Interestingly, the semi-variance of
the observations with increasing distance does not increase to the
magnitude to what is found for the extrapolation methods. Essentially,
the spatial variation of total count in this area is relatively small and
its structure is not strongly related to the environmental covariates,
which explains the lesser performance of the DSM approach.

For the DSM predictions it was found that the PICP was 76%; mean-
ing that for 76% of locations, the observation is encapsulated by the as-
sociated prediction intervals. While a reasonable result, this outcome
implies that the quantification of uncertainties is underpredicted in
this case. Despite the range of the prediction interval being relatively
homogenous across the validation site, areas deemed to be dissimilar
to the donor site (Fig. 3) show general agreement to areas where the
prediction interval was unspecified. This is also the case for the MPS
extrapolation. In terms of the PICP for theMPS extrapolation, 72% of ob-
servations were encapsulated by their prediction interval. However, as
established above, the prediction intervals are in general narrower for
MPS than for DSM. This is an encouraging result — there is reasonable
confidence in the performance of MPS for extrapolation studies as it
performs more-or-less similarly to the DSM approach. A distinguishing
advantage of MPS however is the computational efficiency in being able
to generate multiple realisations.

4. General discussion

The research has been a scoping study of the efficacy of different
extrapolation methods that could be used in a Homosoil or similar
other framework where knowledge is transferred from a donor site



Fig. 7.Validation sitemaps of gamma radiometric total count. (a) Observed data, (b) similarity of validation site to donor site, (c)–(e) DSMextrapolation, and (f)–(h)MPS. Predictionmaps
are the final prediction, prediction interval coverage probability (PICP; green colour= 1, observation fits within interval), and scatter plot of observation compared to prediction. Blue and
red markings on the scatter plot correspond to locations similar and dissimilar to donor site respectively.
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(where there is lots of information) to a recipient site (where there is
scarce information), under the assumption that both sites have similar
environmental conditions, or soil forming factors if studies are con-
cernedwithmapping soil property information. Across thewhole recip-
ient site there are subtle differences between the predictions from both
extrapolation methods. Despite the limited extrapolation potential of
the donor site – on the basis of limited similarity to the recipient site
− the spatial pattern for both predictions is coherent in the sense that
areas of high, intermediate, and low radiometric total counts corre-
spond to known physical and geochemical variations of soil in this
area. The quantifications of uncertainty between both extrapolation
methods however are approached differently, and consequently their
magnitude differs markedly. Despite being evaluated separately and
therefore independent of each other, there is a subtle correlation
between similarity to the donor site and the associated extrapolation
uncertainties for either approach. The validation example highlighted
the potential dangers of extrapolation where results were generally
unsatisfactory for both approaches in this small area. The performance
of the uncertainty quantifications was however reasonable from the
viewpoint that they correctly covered at least 70% of the validation
area. Consequently, in terms of the prediction interval, once one has
been able to quantify the magnitude of uncertainties, objective strate-
gies can be emplaced to bring about their minimisation or narrowing.
Some strategies include sourcing new data by way of environmental
covariates in order to improve the modelling, or by discovery, through
the implementation of field sampling and survey. With such additional
information, a clearer distinction between donor site similarity and dis-
similarity in terms of extrapolation uncertainty may also be realised.

The Homosoil approach or its implementation is meant for situa-
tions where there is very little available information with which to gen-
erate digital soil mapping products. It is encapsulated within a more
general framework for global soil mapping (Minasny and McBratney,
2010) where decisions on what approach to use are determined on
the basis of available data. Most digital soil mapping studies are con-
cernedwith the use of soil point data (McBratney et al., 2003). However
there have only been few digital soil mapping studies concerned with
the use of detailed polygon soil maps and soil point data (Malone
et al., 2014b) or detailed soil type polygon maps only (Odgers et al.,
2015). Nonetheless, there is a legitimate need for consistent global soil
mapping (Sanchez et al., 2009). Consequently, the Homosoil approach
has particular relevance for meeting these needs as situations of poor
soil data coverage are a widespread problem across the globe. As can
be seen from Batjes (2009), poor soil data coverage is not just
constrained to developing countries. It is not expected that extrapola-
tion approaches are final products to the ongoing construction and
maintenance of digital soil information resources. Rather, such ap-
proacheswould be used as a first cut or version to the ongoing develop-
ment of such digital resources with the long term aim of continual
improvement and revitalisation.

A consideration of this study is to weigh up the comparative opera-
tional advantages and disadvantages of each extrapolation method.
At the scale or spatial extent of the recipient area, there are subtle



Fig. 8. Three randomly selected realisations of gamma radiometric total count from the
MPS extrapolation for the validation site.
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differences to the approaches as already detailed. We have already
discussed the differences observed between both approaches in terms
of the validation area and the quantifications of uncertainty. Operation-
ally, both methods are computationally the same in terms of execution
when considering the running time to generate the simulations from
theMPS andmodel fitting, subsequent extrapolation and quantification
of uncertainties for the DSM approach. The DSM approach is favourable
because it is model derived— the extrapolation predictions are general-
ised as a predictive function of the available covariates from the donor
area. Ultimately, the accuracy of the predictions will be improved if
there is a high fidelity between donor and recipient sites in terms of
the covariates. The success of the MPS approach is equally reliant on
having this high fidelity, however an operational issue with this ap-
proach is that there are some parameters to tune in order to generate
the predictions, although Meerschman et al. (2013b) provide guidance
on how to do this. Intuitively, theMPS approach may be a more accept-
able alternative in situations where the donor area contains repeating
landscape characteristics, an example being the spatial pattern of a
drumlin landscape. Well-defined and repeating features seem to be a
necessary input for MPS (Mariethoz et al., 2010; Meerschman et al.,
2013a, 2013b), which may be comparatively overlooked if a point-
based DSM approach were used for extrapolation. Further investigation
will be necessary to determine whether this idea holds true however.

While Homosoil is framed in the context of global soil mapping ef-
forts, it has been demonstrated in this study that it can be applied to a
regional context. The study has been a scoping study about differing ex-
trapolationmethods. It has possibly been limited by the fact that a small
donor area was used, meaning some rather large and possibly insur-
mountable assumptions about the donor site being ‘representative’ of
the recipient site are being proposed. Nonetheless, in the context of
this study, the Homosoil framework is but one line of research enquiry
to ongoing investigations to derive detailed gamma radiometric map-
ping across the recipient site. Another is detailed in Stockmann et al.
(2015). Future investigations in the Homosoil framework regarding
the data infrastructure development in the region are to apply it using
a patchwork (rather than one) of donor sites distributed across the
area. This is likened to a gap filling exercisewhich could also have appli-
cations for studies at national and global extents.
5. Conclusions

The main outcomes of this research were:
1. We investigated the concept of Homosoil for spatial soil mapping
across a data scarce area. Both DSM and MPS were used as different
extrapolation methods to fulfil high resolution mapping in an other-
wise data scarce area, using detailed information from a relatively
small donor area.

2. We demonstrated an approach based on the Mahalanobis distance
for assessing the similarity between donor and recipient sites. Once
a threshold has been established to distinguish between similar
and dissimilar, it may be used to constrain the extent of extrapola-
tion. Nevertheless, while the similarity assessment and uncertainties
of the extrapolation approaches were evaluated independently, our
study demonstrated that areas of dissimilarity to the donor site
have a relatively larger uncertainty compared to those areas that
are similar.

3. From a limited validation area, it was demonstrated that Homosoil
approaches for spatial mapping should not be used as a final deliver-
able, but as a ‘first cut’ to realising high information content digital
soil mapping systems in otherwise data scarce areas.

4. Both the DSM and MPS approaches were comparable in terms of
mapping the spatial pattern of gamma radiometric total count across
the recipient site. The approaches are also comparable in terms of
computational efficiency, taking into account that uncertainties of
the predictions were also quantified — albeit for the DSM approach
they are derived from a model, and for the MPS they are the quanti-
fied simulation response of varying the direct sampling of a training
image/s. For the MPS approach however, there are a number of pa-
rameters to tune the algorithm. These may be optimised via a sensi-
tivity analysis, of which was not carried out in this study, but may
contribute to additional computation time. MPS could possibly be a
good alternative compared to DSM for homosoil applications if
there is a well-defined and repeating landscape feature observed in
the donor site that is also present across a recipient site.
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