
Geoderma 265 (2016) 120–130

Contents lists available at ScienceDirect

Geoderma

j ourna l homepage: www.e lsev ie r .com/ locate /geoderma
Farm-scale soil carbon auditing
J.J. de Gruijter ⁎, A.B. McBratney, B. Minasny, I. Wheeler, B.P. Malone, U. Stockmann
Faculty of Agriculture and Environment, Biomedical Building C81, The University of Sydney, NSW 2006, Australia
⁎ Corresponding author.
E-mail addresses: jaap.degruijter@wur.nl (J.J. de Gruijt

alex.mcbratney@sydney.edu.au (A.B. McBratney), budima
(B. Minasny), ichsani.wheeler@gmail.com (I. Wheeler), br
(B.P. Malone), uta.stockmann@sydney.edu.au (U. Stockma

http://dx.doi.org/10.1016/j.geoderma.2015.11.010
0016-7061/Crown Copyright © 2015 Published by Elsevie
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 8 June 2015
Received in revised form 2 November 2015
Accepted 8 November 2015
Available online 1 December 2015

Keywords:
Soil carbon auditing
Stratified random sampling
Spatial stratification
Prediction error
Map uncertainty
Value Of Information
A novel method for soil carbon auditing at farm scale based on data value is presented. Using a map of carbon
content with associated uncertainty, it optimizes stratified random sampling: number of strata, stratum bound-
aries, total sample size and sample sizes within strata. The optimization maximizes the expected profit for the
farmer on the basis of sequestered carbon price, sampling costs, and a trading parameter that balances farmer's
and buyer's risks due to uncertainty of the estimated amount of sequestered carbon. The stratification is opti-
mized by a novel method (Ospats), an iterative procedure that re-allocates grid points to strata on the basis of
pairwise differences between predictions and covariances of prediction errors. Optimal sample sizes are calculat-
ed from variance predictions byOspats. An application on an Australian farm has shown that soil carbon changes
across farms and regions can be audited effectively using the proposed method. It is concluded that sample
bulking and returning to the same sites in subsequent sampling rounds are not recommendable.

Crown Copyright © 2015 Published by Elsevier B.V. All rights reserved.
1. Introduction

The soil system is recognized as a significant terrestrial sink of car-
bon. Estimates for the top meter of soil in the world, range between
1200 and 2500 petagrams for organic C (Batjes, 1996; Lal, 2004). The re-
liable assessment andmonitoring of soil carbon stocks are of key impor-
tance for soil conservation and in mitigation strategies for increased
atmospheric carbon (Stockmann et al., 2013). Carbon credits are the
heart of a cap-and-trade scheme, by offering a way to quantify carbon
sequestered from the atmosphere; carbon credits gain a monetary
value to offset a given amount of carbon dioxide releases (Paustian
et al., 2009). The agricultural industry worldwide has the capacity to
capture and store carbon emissions in soil (Paustian et al., 2000). How-
ever there is still a debate on how soil can benefit for the offsets in the
carbon economy because there is no good and efficient way of measur-
ing soil carbon storage with appropriate statistical confidence (Post
et al., 2001; Smith, 2004b). A scheme that can measure and monitor
soil carbon storage on a farm, which is crucial to the participation of
the agricultural sector in the carbon economy is essential.

There is a win–win position for increased carbon storage in soil. Soil
organic carbon (SOC) provides benefits of enhanced soil fertility through
improved soil structure, by promoting the agents and mechanisms of ag-
gregation, and increased cation exchange capacity (Stockmann et al.,
2013). Studies of Australian soil systems have shown that conversion of
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forested and grassland areas into cultivated agriculture has led to an
overall decline in SOC stock in those soils (Dalal and Chan, 2001; Luo
et al., 2010). Conservation tillage, reforestation, and sustainable devel-
opment practices are recognized methods to promote carbon storage.
One mechanism that can facilitate the effective management of the
soil carbon is to treat it as a tradeable resource or commodity. A mone-
tary value has been assigned to carbon, in all its states and forms, which
can allow for the trading and offsetting of carbon budgets. The develop-
ment of carbon credit markets accessible to the private sector would
allow for incentives such as government payments, tax credits, and/or
emissions trading, which can aid in overcoming farmer reluctance to
adopting management strategies that increase soil carbon (Rosenberg
and Izaurralde, 2001).

There are two distinct approaches recognized to establishing SOC
stock with Tier 3 method (IPCC, 2006) including, i.e. process-based
models and inventory measurement systems. The choice between
each approach depends largely on applicability to the situation, data
availability and cost-effectiveness. When considering the costs and
low sequestration rates process-based models may be favored (Conant
and Paustian, 2002; Smith, 2004b), however it is also challenging con-
sidering the diverse combinations of climate, soil type and manage-
ments (Rabotyagov, 2010). It is inevitable that not all combinations
will be covered or parameterized and support for emerging manage-
ments will have a temporal lag in incorporation as data over time is re-
quired. Added to this, there are several other reasons to also develop
Tier 3 direct measurement methods including:

1) providing an independent verification tool applicable to emerging
managements at the farm scale; 2) encompassing adaptive land
management through independence from established management
assumptions; 3) provision of site-specific feedback to landholders as
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well as data generation for wider purposes; 4) continual improvement
of sample design efficiency through time.

One of the biggest problems in direct measurement of soil car-
bon is the expense of verification as we are dealing with the inher-
ent variability of soil in the landscape (Allen et al., 2010; Smith,
2004b). The amount of carbon stored in the soil per unit of land
area is highly variable and depends on annual inputs, soil type
and the degradation rate of the soil C (Jandl et al., 2013). Current
methods for measuring, mapping, and quantifying soil carbon
within an area are expensive and inefficient (Miklos et al., 2010).
Furthermore, it is still not established howwe can monitor changes
in soil carbon efficiently and effectively with sufficient statistical
confidence. A scheme that recognizes the whole farm as a system
that can store carbon is crucial to the agricultural industry, partic-
ularly in the carbon economy. The applicability of direct measure-
ment will likely expand with more efficient sampling and
increasing analytical volumes through time.

Typically, repeat direct measurement of soil C for trend assess-
ment has been carried out by revisiting intensively sampled plots
(Bowman et al., 2002; Chappell et al., 2013) largely to reduce short
range variability and maximize change detection from repeat visits
(Lark, 2009). However, the optimal sample design for trend assess-
ment of soil C due to management differences and establishing the
soil C status of an area are two different objectives (de Gruijter
et al., 2006; Lark, 2009).

Traditionally, soil carbon stock inventory has been based on
performing direct measurement of soil C content for a number of
sampling sites within an area, then extrapolating the data to the de-
sired extent. In Australia, the standard sampling unit for soil organic
carbon is recommended as a 25 m by 25 m square (McKenzie et al.,
2000). The NSW Department of Environment, Climate Change and
Water (DECCW) proposed that for a given unit of land, a 25 m by
25 m subarea is chosen and divided into 10 by 10 equal sized quad-
rats. Ten samples are chosen at random from these 100 quadrats
and the carbon concentration and soil bulk density estimated to a
fixed depth of usually 50 cm. At some later date the process is repeat-
ed in the same subarea. The difference in carbon content is calculat-
ed. The quadrat method has two drawbacks. First, the sampling area
(that is, the subarea) is known, which potentially can lead to dishon-
est practices where carbon may be deliberately sequestered in the
known sampling area. More importantly, the extrapolation of the av-
erage carbon content from the smaller subarea to the larger unit of
land under sequestration management leads to a large sampling var-
iance resulting in an uncertain estimate of the change in carbon con-
tent (Singh et al., 2012).

Such limitations inherent with conventional methods of soil C stock
assessment have prompted the development of new technologies that
provide alternative methods of data acquisition. Technologies such as
remote sensing hyperspectral imagery (Denis et al., 2014; Stevens
et al., 2010) and proximal sensing (Cremers et al., 2001; Gomez et al.,
2008) have been proposed for estimating surface carbon content over
large areas. However such imagery only provides measurement on or
near the soil surface, moreover the high cost of acquiring such data
and the need for laboratory calibration limit its application in a routine
auditing process. Field near infrared spectroscopy can give estimates of
carbon, however sampling is also required, and infrared estimation is
based on calibration to standard analytical techniques (Stevens et al.,
2010). Field prediction of SOC using NIR is still too uncertain, with a
standard error of prediction ranging from 1.3 to 5.8 g/kg (Bellon-
Maurel and McBratney, 2011). In addition correction of soil moisture
from field-acquired spectra can also reduce the prediction accuracy. A
precise and cost-effective means of carbon storage measurement
needs to be developed urgently in order to be able to credit farmers
and land holders for their beneficial inputs in improving both our air
and soil. This paper will review various aspects on soil carbon auditing
along with a case study on a farm in New South Wales, Australia.
2. Sampling objective

Before designing an effective auditing scheme, the primary step
needed is detailing the objectives in statistical terms (de Gruijter
et al., 2006). Generally there has been not enough effort put into
this part in order to design a cost-effective scheme. Most effort is di-
rected into finding a cheaper analytical measurement for soil carbon,
however soil sampling is the largest cost in this activity. As a compar-
ison, the analytical cost of total C by dry combustion is A$10 per sam-
ple, while sampling cost is on average A$100 per soil profile. Thus a
careful definition of the sampling objectives will allow effective
and efficient sampling design and auditing process. The details of
the objective that must be clearly defined in this work are (de
Gruijter et al., 2006, p.29):

1. Target universe: boundaries of the universe in space and in time.
In our case, the target universe in space is a farm, and along the time-

axis the universe spans 3–7 years, the auditorwill monitor the target
variable at a particular time and repeat the same measure after
3–7 years to establish the change in the measure.

2. Target variable: the soil property to be measured on the sampling
units.

We take as target variable the soil organic carbon stock, in ton per ha,
denoted by C. The C stock is measured to a fixed depth (up to amax-
imum depth of 1 m), or better to a fixed cumulative mass of soil,
which deals with compaction/tillage issues (Wendt and Hauser,
2013).

3. Target parameter: the statistic to be estimated from the sample data.
In our case, the target parameter is the change in mean C stock be-

tween time t1 and t2, defined as:

Δ :¼ �Ct1 � �Ct2 ; ð1Þ

where �Ct is the spatially averaged C stock at time t, defined as:

�Ct :¼ 1
A ∫

x∈A
Ct xð Þdx; ð2Þ

where Ct(x) is C stock up to 1m, or to a fixed cumulativemass of soil,
at location x at time t, A is the project area (the farm), and A is the
surface-area of the farm in ha.
In this study we discretize the area by superimposing a fine grid,
with N grid points serving as sampling units. The mean C stock is
then re-defined as the average over the grid points:

Ct :¼ 1
N

XN
i¼1

Ci;t ð3Þ

where Ci ,t is the measured C stock at the i-th grid point at time t.

3. Major design decisions

Three major design decisions are to be made: the sampling ap-
proach, the type of sampling design, and whether to bulk samples or
not.

3.1. Sampling approach

As repeated many times in the literature, there are two primary ap-
proaches in sampling: design-based andmodel-based. Their ideal appli-
cations are for global estimates of a target variable and mapping the
target variable respectively (Brus and de Gruijter, 1997). The design-
based approach is therefore the most appropriate for C stock auditing.
It implies that sampling locations are selected by probability sampling,
and that inference (e.g. estimation) is based on the sampling design
used to select the sampling locations. A strong advantage in the context
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of carbon auditing is that there is no need to make model-assumptions,
which always remain questionable.

3.2. Type of sampling design

The simplest method in probability sampling is by Simple Random
Sampling (SRS): a fixed number of sample points is drawn at random
and independently from each other within the target area. However,
the efficiency of SRS can often bemarkedly improved by Stratified Sim-
ple Random Sampling (StSRS). This divides an area into sub-areas called
strata, and SRS is applied in each stratum.

Appropriate stratification and allocation of sample sizes to the strata
will usually lead to higher precision and lower cost of estimation
(Cochran, 1977). For a single sampling round, the precision can be
expressed as the sampling variance of the estimated mean:

V ẑ
� �

¼
XH
h¼1

Nh

N

� �2 S2h
nh

; ð4Þ

whereH is the number of strata,Nh is the size (number of grid points) of
stratum h, Sh is the standard deviation of z in stratum h., and nh is the
sample size allocated to stratum h.

Given a stratification and a total sample size n, optimal allocation of
sample sizes to the strata, in the sense of minimal sampling variance of
themean, can be realized by so-called Neyman allocation (Dalenius and
Hodges, 1959; Cochran, 1977). The optimal sample size for stratum h is
then given by:

n0
h ¼ n

NhSh
∑H

h¼1 NhSh
: ð5Þ

The change in total soil carbon between time t1 and t2, Δ, can be
estimated as the difference between the estimates at time t1 and t2:

bΔ ¼bCt1 �bCt1 : ð6Þ

If measurement is based on sampling at the same locations in
both rounds, then the variance of the estimated difference is given
by:

V bΔ� �
¼ V bCt1 � bCt1

� �
¼ V bCt1

� �
þ V bCt2

� �
� 2ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V bCt1

� �
V bCt2

� �r
; ð7Þ

where ρ is the temporal auto-correlation coefficient of the measure-
ments at t1 and t2. However, to avoid the risk of fraudulent practices,
it is prudent to sample at the second round at random locations that
are selected independently from the first round. This is what we pro-
pose to do. So in our case the covariance term in Eq. (7) equals zero,
so

V bΔ� �
¼ V bCt1

� �
þ V bCt2

� �
: ð8Þ

Clearly, the certainty thus achieved may have a price. No advantage
is taken from a possibly positive temporal auto-correlation, which
would render a higher precision. On the other hand, improving the
stratification for the second round by using new prior information (at

least the first round sample data), will reduce VðΔ̂Þ. This advantage
would be lost if the sample sites are re-visited, because then the strati-
fication must be kept as it is.

3.3. Method of measurement

There are variousmethods to determine the C stock of a core sample,
each having its own pros and cons in terms of costs and accuracy. The
choice has consequences for the cost-effectiveness of the monitoring
scheme as a whole, and should be considered in relation with the deci-
sion on bulking (Section 3.4).

The C stock of a core is usually measured indirectly, by taking sub-
samples andmeasuring their water content and C concentration. The
C stock is then calculated from C concentration (kg/kg) × bulk densi-
ty (kg/m3) × depth of core (m). Clearly, subsampling errors add to
the analytical errors, thus increasing the total measurement error.
To address this problem, Pallasser et al. (2015) developed a carbon
determination system for whole soil cores. Their method seems
promising for routine application in soil carbon auditing. It has the
additional advantage of a direct measurement of both C stock and C
concentration.

3.4. Sample compositing

Stratified random sampling allows sample bulking or compositing in
order to reduce laboratory costs. Soil materials sampled at the locations
(aliquots) during a sampling round can be bulked andmixed thorough-
ly to form a composite or bulk sample. Each composite is formed by
bulking a random selection of a pre-chosen number of aliquots, either
within or across strata. Bulking is a common practice in sampling for
soil testing. The basic assumption is that soil carbon is additive and an-
alyzing a bulk sample gives the same result as averaging the values of
the individual aliquots (de Gruijter et al., 2006). Bulking across evenly
sized strata has been successfully applied in estimation of mean soil P
concentration in The Netherlands (Brus and Noij, 2008), and was pro-
posed for probability sampling in C stock estimation (Chappell et al.,
2013).

The one and only advantage of compositing is cost reduction,
however there are four disadvantages. First, the cost reduction is due
to a smaller number ofmeasurements, which increases the contribution
of measurement errors to the total estimation error of the mean.
Second, sample sizes (total and within strata) can no longer be chosen
freely, as there have to be multiples of 2, 3 or higher factors, depending
on how many aliquots are bulked. (For instance, with compositing
across 10 strata, the sample size has to be a multiple of 10). This
implies that the sampling variance cannot be minimized as effectively
as in non-composite sampling. Third, as composites are larger than sin-
gle aliquots, mixing and/or sub-sampling error will generally have a
larger effect on the total estimation error than in non-composite sam-
pling. Fourth, updating the prediction field using data from the first
sampling round will be problematic because the geographical coordi-
nates of the sample points are related only with averages over points.
Local compositing (i.e. using an aggregate sample support) is a different
matter and may be advantageous where there is substantial local
variability (Lark, 2012).

We carried out a preliminary analysis (not reported here) on the
cost-effectiveness of compositing in our circumstances, based on as-
sumed values of sampling costs, measurement costs, measurement
and mixing error and spatial variability of SOC. Our temporary conclu-
sion is that the advantage of compositing will not outweigh its disad-
vantages for monitoring SOC at farm scale.

4. Stratification methods

There are various ways to stratify a farm, which includes: compact
geographical stratification, stratification by ancillary variables, or strati-
fication by amap of predictions of the target variable. A novel method is
stratification by a map of predictions with uncertainties.

4.1. Compact geographical stratification

Compact geographical stratification works best when no informa-
tion on the farm is available. It is just stratification on the basis of spatial
coordinates to ensure that the target area is fully covered spatially. Typ-
ically a farm is represented by a regular grid. The spatial coordinates of



Fig. 2. Stratification by k-means clustering of ancillary variables of Nowley farm.

123J.J. de Gruijter et al. / Geoderma 265 (2016) 120–130
the grid points can be stratified into compact geographical strata by
minimizing the within stratum sum of squared distances:

OMSSD ¼
XN
i¼1

XH
h¼1

d2ih; ð9Þ

where dih is the Euclidean distance between location i (xi, yi) and the
mean of stratum h (bh, ch):

d2ih ¼ xi � bhð Þ2 þ yi � chð Þ2: ð10Þ

The assumption is that the variable is spatially correlated so that the
variationwithin each sub-region is smaller than the global variation. An
example of the compact geographical stratification for a farm (details in
Section 7) is given in Fig. 1.

4.2. Stratification by ancillary variables

In most situations ancillary variables will be available for the farm.
Here we can recognize the readily (and cheaply) available information:
digital elevation models and aerial photography or satellite imagery.
The second option is to survey the area using proximal soil sensors,
such as electromagnetic induction and gamma radiometrics. Land use
is particularly important in auditing soil carbon, and needs to be incor-
porated in the stratification.We can perform k-means or fuzzy k-means
clustering (McBratney and de Gruijter, 1992) of the ancillary variables
to come up with the strata. Miklos et al. (2010) utilized radiometric
surveys to stratify the study area (farm) to estimate soil carbon stock.
Similarly Simbahan et al. (2006) used ancillary variables to target sam-
pling for digital soil mapping. However, both of these studies used
model-based sampling strategy for the purpose of mapping soil carbon
stock. In addition, collection of high-resolution ancillary variables using
proximal soil sensing is expensive and would not be feasible for C stock
auditing. k-means clustering minimizes the mean squared distance be-
tween the grid of ancillary multi-variables and their nearest centroid.
The clusters are represented by their centroids or means. In k-means
the objective function is:

OKM ¼
XN
i¼1

XH
h¼1

d2ih: ð11Þ

This is similar to Eq. (9), except that d here is the component of a dis-
tance matrix, calculated as:

d2ih ¼ xi � chð Þ0A xi � chð Þ; ð12Þ

where ch is the class centre (centroid) of class h, and A is the distance
norm matrix, which can be the inverse of variance–covariance matrix
of X' or called Mahalanobis distance. An example in Fig. 2 shows the
Fig. 1. Compact geographical stratification of Nowley farm.
farm stratified in 12 clusters based on ancillary variables: elevation
and total gamma radiometric counts for the farm in the case study.
The assumption is that the selected ancillary variables are known to
control the distribution of soil carbon, and theweights of these variables
are equal.

4.3. Stratification by a map of predictions

SOC prediction fields generated from digital soil mapping can be used
as a source of univariate information for stratification (McBratney et al.,
2011;Wheeler et al., 2012;Wheeler, 2014). This approach uses the avail-
able quantitative knowledge, the relationships between the covariates
(ancillary variables) and soil carbon, the knowledge being embodied in
the model used to generate the spatial distribution of estimated carbon
content. Effective stratification involves locating stratum boundaries
along its target variable distribution and allocation of sample sizes to
each stratum in amanner that increases the efficiency of the survey lead-
ing to higher precision or lower costs (de Gruijter et al., 2006).

An approximate solution to the problem is provided by the cumula-
tive square root of the frequency (cum-root-f) method of Dalenius and
Hodges (1959). To deal with the frequency distribution of skewed var-
iables, the geometric stratification method (Gunning and Horgan,
2004) or the method of Lavallee and Hidiroglou (1988) can be used to
determine optimal stratum boundaries. This method attempts to mini-
mize the sampling variance of the mean Vðẑ�Þ. However, a disadvantage
is that it assumes implicitly that the predictions have only negligible er-
rors. An example in Fig. 3 shows the farm stratified in 12 strata by the
cum-root-f method.

4.4. Stratification by a map of predictions with uncertainties

The cum-root-fmethod and its variants on the one hand and the com-
pact geographic stratification method on the other hand represent two
Fig. 3. Stratification of the carbon map of Nowley farm.



Table 1
Schematic overview of the auditing procedure.

Step Action

1 Preparation:
1a Delineate the area.
1b Superimpose a grid with predictions and error variances.
1c Determine cost per grid point and carbon offset price.
2 Optimize design for the first sampling round:
2a Choose allowed minimum sample size within strata (e.g. 3).
2b Choose a feasible range of stratum numbers.
2c For each stratum number in the range, calculate stratification (Ospats), total

sample size (Eq. (21)) and sample sizes within strata (Eq. (5)).
2d Select the design with the largest stratum number that still fulfills the

condition of step 2a.
2e Draw a stratified random sample according to the design from step 2d.
3 Execute the first sampling round:
3a Collect samples at the locations from step 2e, and take laboratory

measurements to determine the carbon stock for each location.
3b Estimate the total carbon stock (Eq. (6)) and its variance (Eq. (8)).
4 Optimize design for the second sampling round:
4a Update the predictions and error variances using the sample data from the

first round.
4b Repeat step 2.
5 Execute the second sampling round: repeat step 3.
6 Finish: calculate the confidence interval for the total amount of sequestered

carbon (Eq. (18)).
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extreme solutions in the sense that they assume errorless predictions and
absence of useful prediction, respectively. Realizing the limitations of the
current methods de Gruijter et al. (2015) proposed a new stratification
method (Ospats), which uses a raster of predicted values with associated
error variances. By taking prediction errors into account this method can
produce stratifications that represent transitions between the two ex-
tremes. The resulting stratification is optimized by minimizing the ex-
pected sampling variance, assuming optimal (Neyman) allocation of
sample sizes to strata. This is implemented by minimizing:

O ¼
XH
h¼1

XNh−1

i¼1

XNh

j¼iþ1

d2ij

8<:
9=;

1=2

; ð13Þ

where dij
2 here is the squared difference between the true values of the

target variable C, which are unknown. However, dij2 can be predicted
using the predictions and their error variances. The prediction of dij2 is ob-

tained by taking its expectation, conditional on Ce1⋯ CeN:
D2
ij :¼ Eξðd2ij jCei : i ¼ 1;…;NÞ; ð14Þ

which can be written out as

D2
ij ¼ ðCei � Ce jÞ

2 þ V eið Þ þ V ej
� �� 2Covðei; ejÞ; ð15Þ

where Cei is the prediction of Ci, with prediction error ei.
The objective function O is minimized by an iterative re-allocation

algorithm similar to those for k-means, except that here mutual dis-
tances are taken between grid points instead of distances between
grid points and centroids. See de Gruijter et al. (2015) for further details.

The value ofO resulting afterminimization can beused to predict the
sampling variance of the estimated mean under Neyman allocation, for
a given total sample size n (cf. Formula 18 in de Gruijter et al. (2015))

Ve bC� �
¼ O

2

n
; ð16Þ

where O ¼ O=N.

5. Optimization criterion

The total sample size is usually determined, either as the maximum
affordable, or via a targeted Minimum Detectable Difference (MDD, the
smallest detectable difference between means when the variation,
significance level, statistical power, and sample size are specified)
based on a prior estimate of the spatial variability of SOC (Garten and
Wullschleger, 1999; Saby et al., 2008; Singh et al., 2012; Smith,
2004a). As a step towards further rationalization, we follow a Value Of
Information (VOI) approach, not a statistical one. The sample size will
be determined so as to maximize the expected profit for the farmer,
by financial quantification of the value of the sample data and the
costs to collect the data. The VOI approach to decide rationally on the
level of research investment is generally considered as superior to
more-or-less arbitrary statistical criteria such as variance, power or
MDD. See Morgan et al. (1990) for a discussion of the VOI approach.

In the early seventies many quantitative studies have been devoted
to the relation between quality and production costs of soil maps, nota-
bly by Philip Beckett et al. (Beckett and Burrough, 1971). However, the
problem is often too complex to apply the VOI approach, mainly
because the financial consequences of differences in data quality are
hard to quantify. This is probably the reason why the VOI approach
has found little application in soil survey so far. See Bie and Ulph
(1972) for an early application, and more recently Giasson et al.
(2000) and Knotters et al. (2010). As explained below, we can apply
the VOI approach here, because we can quantify the value of sample
data before they are collected.

The data value (DV) of a set of SOC sample data depends on the pre-

cision of the estimated sequestration bΔ. This is because the farmer will

not be able to trade his sequestration on the basis of Δ̂alone, without ac-
counting for uncertainty of the estimate. Therefore we wish to deter-
mine a tradeable amount of sequestration tp, such that there is large
probability γ (say 95%) that the future sequestration will amount to tp
or more. To that order we define tp as the lower boundary of a one-
sided prediction interval around the predicted difference in estimated

mean carbon contents, bΔ ¼ bCt1 � bCt1 :

tp :¼ Δ̂� Zγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ve �̂Ct1

� �
þ Ve �̂Ct2

� �
;

r
ð17Þ

where Zγ is the γ quantile of the standard normal distribution.
Of course, after the second round tpwill be calculated from the sam-

ple data as the lower boundary of the one-sided confidence interval:

tp ¼ bΔ� tα;ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibV bCt1

� �
þ bV bCt2

� �r
; ð18Þ

where tα ,ν is the (1-α) quantile of the Student distribution with α=γ
and ν=n1-H1+n2-H2 degrees of freedom (from both rounds).

Optimized stratification by Ospats and Value Of Information as
optimization criterion are core elements of the auditing process
that we propose. The process as a whole is schematically presented
in Table 1.

6. Optimization of the first sampling round design

Using Ospats means that, for a given number of strata, the resulting
stratification is optimized for any sample size, assuming optimal
(Neyman) allocation of sample sizes to the strata. Thus there are two
design parameters left that are still to be optimized: the number of stra-
ta, and the total sample size for that number.

First we optimize the sample size for a given number of strata. To
do this we need to make an assumption about the sampling variance
from the second round relative to the first round, because the data
value DV depends on the sum of these variances; see Eq. (17). For
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simplicity we assume that both variances will be equal. (This will
happen, for instance, when the same stratification and the same
sample size are used for both rounds, and the spatial variances with-
in the strata do not change.) Under this assumption Eq. (17) sim-
plifies to:

tp ¼ bΔ� Zγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ve bCt

� �
;

r
ð19Þ

where VeðbCtÞ follows from Eq. (16) and depends now only on n.
We define the expectedfinancial gain (G) as the data valueDVminus

the data costs DC, so G≔DV-DC. In order to maximize G, we need a cost
function forDC. We assume that a simple linear function for the variable
costs of field and laboratory work suffices here, so DC= f ⋅n, where f is
the average cost of obtaining the data per grid point. (The average trav-
eling time between sample sites will decrease with increasing sample
size. However, we expect that this will have only a minor effect, at
least at farm-scale.)

For the data valuewe haveDV=CP ⋅A ⋅tp, where CP is the price of se-
questered carbon per mass unit, and A is the surface area of the farm. So
we wish to find the optimal sample size n′ that maximizes G, using
Eqs. (19) and (16):

G ¼ DV−DC ¼ CP � A � tp− f � n
¼ CP A � bΔ−A � Zγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eV bCt

� �r( )
− f � n

¼ CP � A � bΔ−CP � A � Zγ � O
ffiffiffi
2
n

r
− f � n

ð20Þ

Equating the derivative dG/dn to zero, renders

n0 ¼ CP � A � Zγ � O
f
ffiffiffi
2

p
 !2=3

; ð21Þ

a realwhich should be rounded to the nearest integer. The optimal sam-
ple sizes for the strata follow by imputing n′ in Eq. (5) and rounding to
the nearest integer. Note that the underlying assumption here is that tp
will not exceed the sequestration capacity of the farm during the con-
tract period, or a possible limit set in advance by the auditor or a
regulator.

To see how, for a given number of strata, the gain changes with in-
creasing sample size, we cannot use G as in Eq. (20) because that de-

pends on bΔ, which is unknown before sampling. Therefore we use an
incremental gain, relative to n=1:

Ginc nð Þ :¼ G nð Þ � G 1ð Þ: ð22Þ

Applying Eq. (20), this boils down to

Ginc nð Þ ¼ CP � A � Zγ � O
ffiffiffi
2

p
1�

ffiffiffi
1
n

r !
� f n� 1ð Þ: ð23Þ

As G(1) is negligible, Ginc(n) is practically equal to G(n).
Having analyzed above how the sample size can be optimized given

the number of strata, we turn now to the optimization of the number of
strata itself, where we assume that for each possible number of strata
the optimal sample sizewill be chosen. Herewe have the inconvenience
that Eq. (23) cannot be used for gain comparisons between design alter-
natives with different numbers of strata, as O differs between stratifica-
tions. To enable these comparisons, we re-define the incremental gain
as a function of H, relative to H=1 (i.e. no stratification), while stan-
dardizing the sample size on the optimal size for the given number of
strata, n′H:

Ginc Hð Þ :¼ G H;n0
Hð Þ � G 1;n0

1ð Þ; ð24Þ
where G(H,n′H) is the gainwithH strata and the optimal sample size for
H. Again applying Eq. (20), this boils down to

Ginc Hð Þ ¼ CP � A � Zγ
ffiffiffi
2

p
O1

ffiffiffiffiffiffiffi
1
n0

1

s
� OH

ffiffiffiffiffiffiffi
1
n0

H

s !
þ f n0

1 � n0
Hð Þ; ð25Þ

where OH is the value of O for the Ospats stratification with H strata.
(Note that O1 follows from Eq. (13) without the need for iteration.)

7. Optimization of the second sampling round design

Optimization of the sampling design for the second round is similar
to the first round, with one exception. The sample data from the first
round are used to estimate the mean carbon content and the variance

of that estimate. So the predicted sampling variance VeðbCt1 Þ in the trad-

ing point Eq. (17) is replaced by the estimated sampling variance bVðbCt1 Þ.
So Eq. (17) is updated as

tp :¼ bΔ� Zγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibV bCt1

� �
þ Ve bCt2

� �
;

r
ð26Þ

where the first variance is a fixed quantity, and the second is the result
of optimizing H and n. As these variances cannot be assumed equal as
for the first round, the gain Eq. (20) is updated as

G ¼ DV−DC ¼ CP � A � tp− f � n2

¼ CP � A bΔ−Zγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1 þ eV bCt2

� �r( )
− f � n2

¼ CP � A � bΔ−CP � A � Zγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1 þ O

2
2

n2

s
− f � n2

ð27Þ

where n2 is the sample size in the second round,O2 is the objective func-
tion value from the Ospats stratification used for the second round, and

V1 is shorthand for bVðbCt1 Þ.
The optimal sample size is again found by equating the derivative of

G with respect to n2 to zero:

G0 ¼ CP � A � Zγ � O2
2

2n2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1 þ O

2
2=n2

q � f ¼ 0 ð28Þ

which can be solved numerically by evaluation of G′ for a range of n2.
Eq. (25) for the incremental gain as function of H is updated as:

Ginc Hð Þ ¼ CP � A � Zγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1 þ O

2
1=n0

1

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1 þ O

2
H=n0

H

q� �
þ f n0

1 � n0
Hð Þ

ð29Þ

8. Case study

A study was performed at the University of Sydney E. J. Holtsbaum
Agricultural Research property also known as the Nowley farm, located
in NorthWest Slopes and Plains of NSW, with an area of 23 km2. Due to
budget constraints we could only afford to take 50 samples. Within this
limitationwewanted tomaximize the number of strata,which led to 10
strata with 5 samples in each. Although the first round sampling design
thatwe realized in this case studywas pre-defined by the available bud-
get, we still can demonstrate our data value approach to optimization,
because this only needs a grid with predictions and a grid with associat-
ed uncertainties.



Fig. 5. Stratification based on predictions and error variances in Fig. 4.
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8.1. Optimizing the first round sampling

A digital map of C stock in the upper 7.5 cm was generated for the
whole farm at a grid spacing of 10 m × 10 m, along with its uncertainty
(Fig. 4). The map was made using stepwise multiple linear regression,
with covariates: elevation, terrain wetness index, gamma radiometrics
K, gamma radiometrics Th, Landsat Bands 2, 4 and 5.

C ¼ 4:34þ 0:09� Elevation−4:56� GammaKþ 1:22� GammaTh
−1:62� LSBand2þ 0:17� LSBand4þ 0:37� LSBand5
−1:1�WetnessIndex

ð30Þ

The model was calibrated with data from 80 samples collected in
2014 in the same area. Model residuals showed no spatial autocorre-
lation. Leave-one-out cross validation gives RMSE = 5.1 and R2=
0.42.

As indicated above, in this case study we used sample data to cal-
ibrate a prediction model, which was then used to generate a carbon
map. However, we expect that in practice our optimization system
will be bootstrapped directly from a carbon map, so that there will
be no need to collect data. Carbonmaps at reasonably high resolution
are becoming available. These have associated uncertainty, and
could be down-scaled if necessary. For instance: Soil and Landscape
Grid of Australia (Grundy et al., 2015), http://www.clw.csiro.au/
aclep/soilandlandscapegrid. See also Fig. 9 in Kidd et al. (2015) and
Fig. 5 in Liddicoat et al. (2015).

The map of C stock and its uncertainty was used for stratifications
withOspats. Fig. 5 shows theOspats stratificationwith 10 strata. Because
of the current computational limit of the Ospats algorithm on grid size,
the maps were coarse-gridded to 30 m × 30 m. The resulting 25,955
grid data were used to optimize the number of strata, the total sample
size and the allocation of sample sizes to the strata.

In order to demonstrate the data value approach to optimization of
the sample size for a given number of strata, we used the following
parameters.

• Carbon offset price: CP=A$2.7 per Mg CO2=A$10 Mg-1C
• Cost of obtaining data per grid point: f=A$120
• Surface area of the farm: A=2336 ha
• Number of grid points: N=25,955
Fig. 4. Prediction and prediction variance
• 95% quantile of the standard normal distribution: Zγ=1.645
• Objective function value resulting from Ospats: depends on the num-
ber of strata. For instance, in the first round as realized (Section 8.2)
we used 10 strata, resulting in: O ¼ 6:33 Mg � ha�1

The optimal sample size, assuming Neyman allocation, follows from
Eq. (21) and turns out to be 127. To see how the gain varieswith sample
size,we calculated the incremental gainGinc using Eq. (23) for a range of
sample sizes; see Fig. 6. The figure shows that the net-return from sam-
pling investments declines somewhat beyond n=127, but the curve is
surprisingly flat between n=50 and 250. Table 2 shows the Neyman al-
location for n=127. The variation of the allocated sample sizes is largely
due to the variation in surface areas between the strata, as their stan-
dard deviations are fairly even.

To optimize the number of strata, we maximize the predicted gain,
under the condition that none of the sample sizes in the strata as deter-
mined by Neyman allocation is smaller than a pre-chosen minimum.
The bare minimum is 2, to enable estimation of the sampling variance.
However, in view of the possible loss of a sample, it is prudent to main-
tain a higher minimum, for instance 3 or 4. So for a range of possible
stratum number we calculate both the predicted incremental gain and
the minimum sample size per stratum, given the optimal total sample
size. Fig. 7 shows how the optimal total sample size and the maximum
of C stock in topsoil of Nowley farm.

http://www.clw.csiro.au/aclep/soilandlandscapegrid
http://www.clw.csiro.au/aclep/soilandlandscapegrid


Fig. 6. Predicted gain [A$] as a function of first round sample size, using Ospats stratifica-
tion with 10 strata (see Fig. 5).

Fig. 7. Optimal total sample size (upper line), maximum sample size per stratum (middle
line), and minimum sample size per stratum (lower line) as a function of first round stra-
tum number.
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and minimum allocated sample sizes change with increasing stratum
number.

To optimize the number of strata, we applied Eq. (25) to a range of
stratum numbers. See Fig. 8 for the predicted incremental gain as func-
tion of H, relative to H=1 (no stratification). This figure shows that the
more strata, the higher gain is predicted, although at an ever slower
rate. For instance, using 12 strata instead of 10 renders an increase of
A$970. It appears that 12 is the highest number of strata whereby all
strata receive at least 3 samples via Neyman allocation. So in this case
12 turns out to be the optimal number of strata under the condition
that 3 is the allowed minimum.

8.2. Realization of the first round sampling

Ospatswasused to stratify the farm into 10 strata (Fig. 5), and 5 sam-
ple points were selected at random from each stratum. The survey was
conducted in 2015,with locations determined using a GPS. Topsoil sam-
ples were collected at each location using a core with a diameter of
72 mm and height 75 mm. Sub-samples were air-dried and ground,
and C concentration was determined using a VarioMax CN Analyser. C
stock was then calculated as C concentration times bulk density times
core height.

The statistics of the sample data are given in Table 2. The estimated
mean Carbon stock for the farm is 15.17 Mg ⋅ha-1, with an estimated
standard error of 0.62 Mg ⋅ha-1. The standard error predicted by Ospats
is 0.90Mg ⋅ha-1. Ideally, if both the estimate and the predictionwere er-
rorless they should have been equal, but both figures have their
uncertainty.

The data can also be used to estimate the sampling variance when
Simple Random Sampling (SRS) would have been applied with the
Table 2
Statistics of C sample data from Nowley farm, based on the Ospats stratification with 10
strata and 5 samples per stratum.

Strat. Relative
size

Mean St. error
estimated

St. error
predicted

Optimal sample
size

1 7.52 11.56 0.83 3.34 11
2 9.01 11.27 1.27 3.08 12
3 12.48 11.70 1.16 2.64 15
4 16.10 13.37 1.44 2.55 18
5 7.63 10.98 1.25 2.99 10
6 15.98 17.06 2.13 2.75 20
7 12.16 14.35 2.01 2.68 15
8 7.89 16.72 1.24 2.93 10
9 7.46 28.12 4.00 2.85 10
10 3.75 25.19 2.54 3.34 6
Farm 100.00 14.82 0.62 0.90 127
same sample size. The spatial variance of the area S2(C) was estimated
by:

S2
b
Cð Þ ¼ C2—̂ � bC� �2

þ bV bC� �
ð31Þ

c.f. Equation 7.16 in de Gruijter et al. (2006). Divided by the sample size
(50) this yielded a sampling variance for SRS of 0.752. The relative effi-
ciency as compared to SRS equals 1.96, which is equivalent to 98 sam-
ples if it was conducted by SRS.

In conclusion, the Ospats stratification based on the available digital
map of C stock was very efficient.

8.3. Optimizing the second round sampling

Given the methods of optimal stratification and allocation, respec-
tively Ospats and Neyman, the remaining design parameters to be opti-
mized are the number of strata H and the total sample size n. To update
the stratification for the second round, onemay improve the predictions
by more advanced modeling and by using more predictive prior infor-
mation. In this case we calculated an updated carbon map using a
multiple linear regression model (like for the first round), now
predicting C content from elevation, gamma radiometric K, terrain wet-
ness index and weathering index. This model was calibrated with the
sample data collected in 2014 (80) and 2015 (50). Again, the residuals
showed no spatial auto-correlation. See Fig. 9 for the updated maps of
Fig. 8. Predicted incremental gain as a function of first round stratum number.



Fig. 9. Updated prediction and prediction variance of C stock in topsoil of Nowley farm.
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predictions and prediction variances. The updated Ospats stratification
with 10 strata is displayed in Fig. 10.

To find the optimal sample size for 10 strata, we used the gain
Formula (27), V1=0.3844 as the variance estimated from the sample
data, and O2 ¼ 1:0942 resulting from the updated stratification. The
gain as function of the sample size is shown in Fig. 11. It appears that
the optimal sample size is only 15, implying that 10 strata is too many
under the condition that each stratum receives at least 3 samples.
Therefore we determined the optimal sample size and Neyman alloca-
tion for a range of lower stratum numbers, see Fig. 12. This led to a
maximum of 6 strata and a sample size of 22.

The reasonwhy only 6 instead of 10 strata and 22 samples instead of
50 suffice for the second round, is that updating the carbon map with
the first round sample data has enabled an even more efficient stratifi-
cation than in the first round. This is shown in Fig. 13, presenting O as
a function of stratum number for both rounds.
9. Discussion

Themethod devised contains two novel elements. First, a newmeth-
od (Ospats) for optimal stratification (de Gruijter et al., 2015), is used
Fig. 10. Updated stratification based on predictions and error variances in Fig. 9.
here for soil carbon auditing. It facilitates effective exploitation of all rel-
evant prior information about soil carbon in the project area, as con-
densed in a carbon map with associated uncertainty. Second, we
developed a data value technique to optimize the number of strata as
well as the sample size, which is novel in the context of carbon auditing.
The optimization criterion of our technique, i.e. the predicted financial
gain from a demonstrated amount of sequestration, should lead to deci-
sions on sampling that are more rational than via general statistical
criteria.

The information needed to start the optimization process, i.e. opti-
mization for the first sampling round, is a carbon map with associated
uncertainty. As carbonmaps at reasonably high resolution are becoming
available, prior data collection in the field will not be necessary. For in-
stance, soil and landscape grids of Australia have associated uncertainty,
and could be down-scaled if necessary.

The method is intended for auditing, not for monitoring or manage-
ment. For the latter purposes there is generally no need for the restric-
tion not to return to the same sites in subsequent sampling rounds.
Efficiency of long-term monitoring may well profit from returning to
Fig. 11. Predicted gain [A$] as a function of second round sample size, using Ospats strat-
ification with 10 strata (see Fig. 10).



Fig. 12. Total sample size (upper line), maximum sample size per stratum (middle line),
and minimum sample size per stratum (lower line), optimized for the second sampling
round, as function of stratum number.
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(part of) the sites, see Brus and de Gruijter (2013). Also, the intended
usage of monitoring results is usually complex, which makes the data
value approach unfeasible.

As shown by the case study, updating themapwith first round sam-
ple data may improve the resulting stratification considerably, and
hence reduce sampling costs. However, this updating option does not
exist if the sample sites are re-visited, because then the stratification
too must stay unchanged.

In the case study only the top 7.5 cmwas sampled. This is shallower
than usual in soil carbon auditing, but it is enough to demonstrate the
method, as this can be applied likewise in projects involving deeper
sampling.

The method has the following limitations and underlying
assumptions;

1. The data value approach as devised here does only account for the
costs that vary with the sample size, i.e. the costs of taking samples
and laboratory analysis. Costs of travel to the farm and office work
(administration, GIS and computing) are not accounted for. This
means that the gain predictions as calculated by the method can
only serve to optimize a sampling design, not to decide on starting
an audited sequestration project.

2. The gain predictions may be hypothetical because underlying as-
sumptions are that the amount of carbon that will be sequestration
by the farm does not reach a physical limit, and that there is no
regulatory set bound to it. However, if necessary the method can be
easily adapted to account for a known limit.
Fig. 13.Objective functionOof stratifications forfirst round (upper line) and second round
(lower line) as function of stratum number.
3. The optimality of stratifications calculated by Ospats is only warrant-
ed as far as the uncertainty of the predictions is correctly quantified.
At present we do not know how sensitive the stratification quality is
for misrepresentation of the uncertainty.

4. Two sources of error are disregarded in this study: error in locating
the sampling sites in the field andmeasurement errors in the labora-
tory. We expect that the disturbing effects of these error sources on
the optimization will be moderate in general.

10. Conclusions

We presented a novel method for soil carbon auditing, which uses
prior information in the form of a carbonmapwith associated uncertain-
ty. The method is based on stratified random sampling and design-based
inference about the amount of sequestered carbon. Stratification, total
sample size and sample sizes per stratum are mathematically optimized
in conjunction. The criterion used is the expected financial gain (exclud-
ing fixed costs) for the farmer. This is maximized by a data value
technique on the basis of assumptions about the costs of sampling and
measurement and the price of sequestered carbon, given a required
level of certainty about the amount of sequestered carbon.

An application on an Australia farm has shown that soil carbon
changes across farms and regions can be audited effectively using the
proposed stratificationmethod and data value technique. The stratifica-
tion method implies that strata will be created that are typically of un-
equal size and spatially non-contiguous. The former means that also
the optimized sample sizes per stratum are unequal and, as a conse-
quence, sample bulking across strata is unfeasible.

Updating the initial carbon map with sample data from the first
round may considerably improve the efficiency of the stratification for
the second round. As this stratification differs from the initial one,
returning to the same sampling sites is unfeasible for design-based in-
ference. Another reason not to return to the same sites is that it is not
recommendable for auditing purposes, in order to avoid possible fraud-
ulent practices and disturbance of sites.

Future researchmay focus on sensitivity of the auditingmethod for in-
correct quantification of the uncertainty of the initial carbon map. Other
research issues are the effects of spatial location error and measurement
error on the optimization process, and how these error sources could be
accounted for.
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