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The objectives of this study were to apply a k-NN approach to predict CEC in Iranian soils and compare this ap-
proach with the popular artificial neural network model (ANN). In this study, a data set of 3420 soil samples
from different parts of Iran was used. Two different sets of cheaper-to-measure soil attributes were selected as
potential predictors. The first set consisted of clay, silt, sand and organic carbon (OC) contents. The second data
set was constructed using OC and clay contents. Two ‘design-parameter’ parameters should be optimized before
application of the k-NN approach. Results showed that the algorithm efficiency is not dependent on these param-
eters. A wide range of suboptimal values around the optimal values may cause a slight error in terms of estima-
tion accuracy. However, the optimal settings of the design-parameters depend on the size of the development/
reference data set. In both k-NN and ANN models, the higher number of input variables can relatively improve
the estimation of CEC. But this improvement was not statistically significant at the 0.05 level. Furthermore, the
results showed that increasing the size of the reference data set to a certain amount (N = 1200) reduced the
estimation error significantly in terms of root-mean-squared residuals (RMSE). However, no significant differ-
ence in the accuracy of k-NN and ANN methods was detected in the reference data set sizes for N > 1200. Results
showed no significant difference between this approach and ANN models, suggesting the competitive advantage
of the k-NN technique over other techniques to develop pedotransfer functions (PTFs), for example, the redevel-

opment of PTFs is not necessarily required as new data become available.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Cation exchange capacity (CEC) is one of the most important soil
indicators which controls some basic attributes such as soil acidity,
nutrient retention capacity and environmental quality. Therefore, it is
considered as one of the key parameters of soil fertility and productivity
management (Krogh et al., 2000). As a result, CEC has long been an
input parameter of many environmental models (Keller et al., 2001).
Added to this, CEC data can give clear and complete interpretation of
soil and plant nutrition processes, and consequently fertilizer and soil
amendment requirements. Laboratory analysis is the most accurate
method for direct measurement of CEC. However, direct measurement
of CEC is difficult, particularly in arid and semi arid region soils of Iran,
due to large amounts of calcium carbonate that makes measurement
expensive and time-consuming (Seybold et al., 2005; McBratney et al.,
2002; Amini et al., 2005).

* Corresponding author.
E-mail address: azolfaghari@semnan.ac.ir (A.A. Zolfaghari).

http://dx.doi.org/10.1016/j.geoderma.2015.11.012
0016-7061/© 2015 Elsevier B.V. All rights reserved.

Pedotransfer functions (PTFs) are indirect methods that have been
used to estimate hard-to-measure soil properties from easier measured
and often readily available soil properties. In recent decades, several
PTFs have been used to developed, correlating CEC to more readily avail-
able soil data such as soil texture, organic carbon and pH. The CEC of
soils is usually related to soil texture, organic matter, mineralogy and
the fractal dimensions of particle size distribution (Bayat et al., 2014).
Krogh et al. (2000) used PTFs to predict CEC of soils and found that
90% of the variation of CEC was attributed to soil clay and organic matter
content. Similar results were obtained by Bell and van Keulen (1995),
who showed that more than 96% of CEC variation in the soil could be ex-
plained by clay, organic matter contents and pH values.

Regarding regression PTFs as a parametric approach, each parameter
of the regression should be calibrated by an optimal fitting of that equa-
tion to data. Moreover, new parameters must be adjusted for each series
of new data and assumptions are required for variable distribution.
However, the model may be difficult to validate if the data set is small.
Small data sets could also lead to issues of model bias (Nemes et al.,
2006). To overcome these limitations, recent research findings have
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suggested non-parametric methods such as artificial neural networks
(ANNSs) as ideal. Applications of ANNs to soil science are varied ranging
from determining soil moisture (Frate et al., 2003), field capacity and
permanent wilting point (Nemes et al., 2006), to the development of
PTFs for prediction of CEC. Amini et al. (2005) indicated that the ANN
method can improve accuracy of CEC prediction up to 25% in compari-
son with multiple linear or least-squares regression methods. Another
form of non-parametric method is k-nearest neighbor (k-NN), a tech-
nique substantially based on the principles of similarity and proximity
of data. The k-NN method is widely used in agriculture (Bannayan and
Hoogenboom, 2009), forestry (Lopez et al., 2001) and hydrology
(Clark et al., 2004; Yates et al., 2003). It is one of such approaches
which have been applied to estimate soil physical and chemical charac-
teristics and would be more useful when the relationship between input
and output data is not clear (Nemes et al., 2006). Jalali and Homaee
(2011) applied this approach for estimating saturated soil hydraulic
conductivity using particle size distribution, bulk density, organic car-
bon, electrical conductivity, and saturation soil moisture content. They
reported that this technique has a good ability to estimate a given target
variable, and it can be considered as a good candidate model for PTFs.
Nemes et al. (2006) estimated the soil moisture content with matric po-
tentials —33, — 1500 kPa soil suction, from particle size distribution,
bulk density and soil organic matter data using ANN and k-NN ap-
proaches. The two approaches have the same accuracy for estimation
and derivation transfer functions (Nemes et al., 2006). Botula et al.
(2013) also used k-NN approach to predict soil water retention in a
humid tropical region and showed that the estimation error in k-NN ap-
proach is lower than the examined multiple linear regression PTFs. Soil
hydraulic properties can better be estimated by the non-parametric
method k-NN compared to the parametric PTFs (Nemes et al., 2008).
Furthermore, Haghverdi et al. (2010) showed that the k-NN method
can more efficiently estimate the soil moisture in matric potentials
—33 and — 1500 kPa compared to the ANN method in the north and
northeast soils of Iran. However, it seems that the application of k-NN
for prediction of CEC is quite new and an investigation is warranted.

Therefore, the objectives of this study were (i) to apply a non-
parametric approach to estimate CEC using an adaptation of the k-NN
algorithm developed by Nemes et al. (2006); (ii) to test the ability of
the k-NN algorithm to predict CEC of arid and semiarid soils of Iran;
and (iii) to compare the prediction performance of the proposed k-NN
variant with the more common ANN model.

2. Material and methods
2.1. Data review

In Iran, a total of 15 World Resources Base (WRB) groups have been
recorded. These include: Calcisols, Cambisols, Chernozems, Fluvisols,
Gleysols, Gypsisols, Kastanozems, Leptosols, Luvisols, Phaeozems, Rego-
sols, Solonchaks, Solonetz, and Vertisols. The most frequently observed
soil classes are: Regosols, Calcisols, and Gypsisols. Most parts of the cen-
tral plains of Iran are not suitable for cultivation except in oasis area,
around the cities and in mountainous plains. The northern Caspian
coast of Iran is the most cultivated part of the country (Hengl et al.,
2007). lllite, high charge smectite, palygorskite, chlorite, vermiculite
and kaolinite silicate clay minerals were found in almost all the soils
studied. However, illite and chlorite clay minerals were the dominant
in arid regions of Iran. The origin of illite and chlorite was mainly from
the parent materials. The amount of vermiculite and smectite were
higher in the soils of northern Iran developed under humid condition.
Palygorskite was found in the higher amounts in the lower areas
under the saline and sodic condition. Palygorskite was a dominant
clay mineral in gypsiferous and calcareous Aridisols. In this paper a col-
lection of 3420 soil samples from around Iran representing different
parts of Iran were used as the reference or training data set of k-NN
and ANN estimations (Fig. 1.).

The soil samples were dried, crushed and passed through a 2 mm
sieve to prepare for physical and chemical analysis. The percentages of
sand (50-2000 um), silt (2-50 pm) and clay (<2 um) were determined
using the hydrometer method (Gee and Bauder, 1986) according to the
USDA soil textural classification system. Fig. 2 shows the textural distri-
bution of the data set. The soil organic carbon was determined using the
Walkly-Black method (Nelson and Sommers, 1982) and the CEC was
determined by the ammonium saturation method at pH 7.0 (Soil Survey
Staff, 1993).

2.2. Reference and test data set

The data set was randomly partitioned into calibration and test sets.
Here 720 samples were designated as test data with the remaining 2700
used for PTF calibration. For a sensitivity analysis calibration data sets of
size: 100, 200, 400, 800,1200, 1600, 200 and 2500 samples were also
used in order to compare whether sample size is important to the devel-
opment of PTFs using either the k-NN and ANN modeling approaches.
Further to this, all the random data selections were repeated 50 times
to allow the development of an ensemble of PTF estimations and subse-
quent estimation of prediction uncertainty.

In this study, the following two data sets were used as model inputs
for predicting CEC. The first set consisted of clay, silt, sand and organic
carbon (OC) contents. The second data set was constructed using OC
and clay contents.

2.3. Prediction models

2.3.1. The k-nearest neighbor technique (k-NN)

The k-NN algorithm used in this study was adapted from the var-
iant developed by Nemes et al. (2006) and it was implemented in
the MATLAB environment (Mathworks, 2010). The k-NN technique
does not use any predefined mathematical functions to estimate a
target variable. A reference data set is searched for soils that are
most similar to the target soil on the basis of the selected input attri-
butes or features. Apparently, the performance of technique largely
depends on the goodness of selection of the ‘most similar’ (nearest)
soils. The similarity between the target soils and the known in-
stances was measured in terms of a metric considered here as the
Euclidean distance:

d,‘ = i Aai]-z (1)
\ j=1

where: d; is the “distance” of the ith soil from the target soil and Aaj is
the difference of the ith soil from the target soil in the jth soil attribute
and x is the number of soil properties considered for the model. The
term ‘distance’, does not refer to actual (physical) distance, but to a
measure of similarity; the distance will be smaller for soils that are
more similar to the target soil in regard to the input attributes.

Soils show some attributes that differ in orders of magnitude or
range. For example, sand content varied between 1% to 98%, but OC var-
ied between 0.009% to 8.8%. Therefore, a unit difference in OC is expect-
ed to be more significant than the same unit difference in sand content.
Therefore, a normalization procedure was applied to the soil attributes
data before they were used to calculate the Euclidean distance in
Eq. (1). Firstly, all the input attributes were first transformed to tempo-
rary variables @jjiemp) With a distribution having zero mean and one
standard deviation as follows:

[(ay) _.ai} 2)
() N I

where a;; is the value of the jth attribute of the ith soil, and d; and
o(a;) are the mean and standard deviation of the observed values
of the jth attribute in the reference data set. Secondly, the difference

ij(temp)
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Fig. 1. Spatial distribution of WRB soil groups (a) and percentage of soil samples collected in the most frequent classes (b). After Hengl et al., 2007.

between the minimum and maximum of these temporary variables
were then examined to identify the soil attribute that showed the
widest range of transformed (temporary) values. This allowed for

80 1

Clay Content (%)

Sand Content (%)

Fig. 2. Variation of clay, silt, and sand in the data set.

obtaining zero mean and the same minimum-maximum range in
the data of all attributes:

g — {max[range(dj-igenp)), - range(dj—xcemp)) }
! range (jemp))

3)

where a;j(temp) is the data of the jth soil attribute normalized using
Eq. (2) and ay(trans) is the final transformed value of the jth attribute
of the ith soil. Eventually, a;; (trans) values derived from Eq. (3) were
used as input in k-NN algorithm.

Finally, one has to decide how to weigh each selected soil while
forming the estimate of the output attribute. The reference data set
soils were sorted in ascending order of their distance to the target soil.
A weighting procedure that accounts for the distribution of the dis-
tances of the selected k-neighbors from the target soil was applied.
Weights of each selected neighbor were computed as:

_ di(rel)

Tk
Z i(rery
p

i

where: k is the number of neighbors selected, w; is the weight associat-
ed with the ith nearest neighbor, and d;(rel) is the relative distance of
the ith selected neighbor, calculated as:

k p

di(rety = 1::1 i (5)

where: d; is the distance of the ith selected neighbor computed
using Eq. (1) and p is a power term to account for different possible
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Fig. 3. Box plots of organic content (OC, %), sand (%), silt (%), clay (%) and cation exchange capacity (CEC, cmol kg~ ! soil) of the data set.

weight-distance relationships. Therefore, CEC was predicted as:

k
CEC; = > wiCEC;

i=1

where: CECjis predicted CEC of ith soil in test data set and CEG; is ith soil
sample in reference data set.

2.3.2. Artificial neural network model (ANN)

The ANN model with three-layer back propagation ANN model was
used to estimate the target data. Various methods were presented to
determine the number of neurons in the hidden layer. For example,
the integer rounded up half the total number of input and output vari-
ables can be used as the number of neurons in the hidden layer
(Nemes et al., 2006). Subsequently, this protocol was adopted for this
study. Before running the program, all the data were scaled to occur
between 0 and 1 in order to increase accuracy of the results. The
ANN modeling was performed using the Neural Network Toolbox in
MATLAB (Mathworks, 2010).

2.4. Sensitivity analysis

Sensitivity analysis was performed using regression methods to
evaluate the effect of each of the input variables on the estimated soil
CEC using k-NN and ANN models. The principle of regression methods
is to approximate mapping between an output and the factors by an

Table 1

Statistics of the data set.
Properties  Unit Min Max Ave SD Median CV  Skewness
USDA sand % 1.00 98.00 31.01 17.83 28.00 0.58 093
USDAssilt % 1.00 7720 36.10 12.78 36.00 036 —0.14
USDA clay % 1.00 76.70 3290 14.75 3250 045 0.28
ocC % 0009 880 0.72 070 050 097 331
CEC cmol. kg~! 1.85 3960 1538 578 1536 038 031

soil

equation of the form:

n
y= boZb,‘Xi + &

i=1

(7)

where: y is the model output, x; is the ith model input, n is the number of
input, b; is the coefficient to be estimated for each x;, and € is random
error.

When the input x; are independent of one another, then the stan-
dardized regression coefficient (SRC) can be used to provide a sensitiv-
ity index for the input x;:

SRC(i) = by (8)

where: s; is the input standard deviation and s the output standard
deviation.

Each of the SRC gives information about the effect of changing the
value of an input from its standard value by a fixed fraction of its stan-
dard deviation, while maintaining the other factors at their default
values. If the regression is actually able to explain the data, the larger
the SRC value the more sensitive the model output is to the input vari-
ables (Confalonieri et al., 2010).

2.5. Evaluation of models:

To evaluate the efficiency and accuracy of k-NN and ANN models, the
root mean square error (RMSE) and mean error (MR) criteria were
used. The mean error indicates whether there is a systematic error in
the method and the RMSE shows the accuracy of the method. Both

Table 2
Correlation coefficients (r) of the measured soil attributes.
Sand Silt Clay oC CEC

Sand 1 —0.57" —0.70™ -0.11™" —048™
silt 1 -017"" 0.12" —0.09™
Clay 1 0.10™* 0.70™*
oC 1 035"
CEC 1

wx

means significant differences (p <0.01)
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RMSE and MR criteria were determined as follows:

N . 2
(CECi—CECi)
_ |
RMSE = 'ﬁ 9)
N
MR =1/NY_ (CECi—CIfCi) (10)

i=1

where: CEC;, CEC;are observed and predicted CEC for ith soil sample,
respectively and N is the number of samples in the test data set.

3. Results

3.1. Summary statistics

Box plots of selected soil attributes for the data set are given in Fig. 3.

The selected data set showed a wide range of soil particle size distri-
bution (Figs. 2, 3 and Table 1). The clay fraction of soil varied between
1%-70.76%. The amount of OC ranged between 0.009%-8.8% with the
average of 0.72%. Soil OC content, as reflected by the coefficient of vari-
ation, showed the highest variability compared to those of the soil
particle-size distribution and CEC (Table 1). The lowest coefficient of
variation (CV) was for silt content. Recalling the soil samples were
collected from different regions of Iran, those samples from the north
parts of Iran with humid climate had higher OC. In contrast, the soils
from the central parts of the country, which is characterized by a dry
climate, showed low OC.

The correlation coefficients between soil attribute are given in
Table 2. A strong correlation was observed between soils CEC and clay
content (r = 0.70™) (Table 2). The correlation between CEC and OC
(r = 0.35) found in this paper was lower than those reported by
Amini et al. (2005) for the arid soils of Iran (r = 0. 65 for CEC and OC
content). However, our findings agreed with those by Bayat et al.
(2014) who found a weak correlation between CEC and OC (r = 0.43)
in humid area of Iran. Considering the correlation between clay content
and CEC, we found greater correlation than those values reported by
Manrique et al. (1991) for the arid soils of USA (r = 0.55). Furthermore,
CEC was negatively correlated with sand and silt contents (Table 2)
which is in agreement with the findings reported by Amini et al.
(2005) and Bayat et al. (2014), respectively.

3.2. Prediction models:

3.2.1. Optimizing the k and p terms

For the k-NN technique, two parameters need to be optimized. The
first was the number of soil samples to be used for formulating the tar-
get soil estimation. The second parameter was the p term introduced in
Eq. (5) and it was used to weigh each of the selected k soils while
forming the estimate of the output attribute. The optimal parameter set-
tings were determined by changing iteratively both of the parameters in
the algorithm and making estimations of the test data set from the ref-
erence data set. For the parameter k, values from 1 to 50 by 1 increment
were considered, while the parameter p was varied between 0 and 4,
with 0.1 increment. Then the RMSE values were determined for each
value of p and k. To avoid errors when determining the optimal values
of p and k, the program was applied at different levels of p and k, and fi-
nally an average value of RMSE was used. Fig. 4. shows the average
RMSE obtained from 2500 samples in the data set. It was likely that
the k-NN technique showed little sensitivity to the choice of parameter
p. The different values of p actually have no significant effect on the er-
rors. For example, different values of p in optimal k vary the RMSE by
about 0.05 cmol ™ kg™ '. The k-NN approach was not also very sensitive
to the choice of k as long as k is above a certain minimum, which was 9
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Fig. 4. Three-dimensional representation of the relationship between the number of
selected neighbors, the p term used in weighing the selected neighbors and the obtained
average root mean square error, using 2500 soils for each replicate of estimations.

or 10. The low sensitivity of k-NN method to p and k values observed in
this paper was consistent with the reports by Lall and Sharma (1996);
Jagtap et al. (2004) and Nemes et al. (2006).

The interdependence of the k and p terms and the number of sam-
ples in the reference data set is given in Fig. 5. Estimations developed
from small data subsets (e.g., here N = 100 or 200) were more sensitive
to changes in k and p compared to those developed from large dataset
(N > 200). For example, including more samples from the reference
data set in each individual estimation such as by increasing k beyond a
threshold generally yielded the worst estimations. This was because
with the small N, increasing k meant that a relatively large proportion
of the data set is included in the estimation, rather than a small, but a
more specific set of samples with very similar characteristics to the tar-
get sample. Hence, the estimates tend to come closer and closer to the
reference data set mean, yielding less accurate “local” estimates.
When k is relatively large and p is kept small, even less similar samples
will have a relatively large weight in the formulation of the final CEC es-
timate. On the contrary, the effect of a relatively large p value, including
from large sample size, on the individual estimation such as k is
increased the nearest samples by their properties would receive a very
high proportion of the weights while formulating the final estimate. In
essence, a large p value can likely counteract the negative effect of
choosing a k value that is too large. This effect was best seen when k
was disproportionately high compared with N. This combined effect
was less and less expressed with an increasing size of the reference
data set.

Due to the low sensitivity of k-NN to the parameter p, choosing a
value of 1 for p did not cause significant error in the estimation of CEC.
Hence, by considering p = 1, Egs. (4) and (5) can be integrated in the
following simple equation, which could be used for weighting the k of
a reference data set.

1/d;

k !
> 1/d;
i=1

w; =

(11)

Despite the low sensitivity of k-NN method to the values of p and k, it
was necessary to determine the optimal values of the above parameters
for running this algorithm. The best choice might be to use the k and p
values with the minimum values of RMSE. On the other hand, the refer-
ence database can possibly affect the optimal values of k and p. For this
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Table 3
Comparison of accuracy of the k-nearest neighbor technique with optimized p and k
settings calculation using cross validation and Egs. (12) and (13).

Evaluation criteria Cluster 1 Cluster 2  Cluster 3

Size of cluster 620 1350 1400
Optimum p and k RMSE 3.70 3.37 3.62
using cross validation MR 0.08 0.30 0.28
Optimum P and k RMSE 3.75 3.38 3.66
using Egs. (12) and (13) MR 0.09 0.28 0.28

reason, we also ran a similar analysis for the reference database sizes,
100, 200, 400, 800, 1200, 1600, 2000 and 2500. The optimal value of k
and p in each of the data sets were obtained such that their RMSE values
were the minimum. The k and p values of the best models were shown
for each reference data set size in Fig. 6. An increasing trend with in-
creasing data set size were found and the best-fitting equation relating
the k and p values to the reference data set size N was derived based on a
power function as:

Kopt = 3.57N241
Pope = 0.807N"4!

where ko, and po, are best p and k values.

In this paper, the power functions were presented describing the
relationship between the reference database size and the parameters
of k-NN method. Lall and Sharma (1996) suggested that the optimal
value of k is approximately the square root of the number of samples.
However, Nemes et al. (2006) presented a power function (k=
0.655N%493) to determine the optimal value of k for the prediction of
soil water content in 33 and 1500 kPa soil suction. Botula et al. (2012)
found also a power function (k= 0.724N%*%®) to determine the optimum
value of k. The optimal values of k calculated in this study were consistent

Table 4

with the results of Nemes et al. (2006) and Botula et al. (2012) but not
with those of Lall and Sharma (1996).

A smaller k in a smaller size of reference data set implied preference
of the algorithm to use smaller and more meaningful data instead of
using a wide range of information (Nemes et al., 2006). It also reduced
its impact to modify the optimal value p. A smaller p also mean that
less weight should be considered for those soils at a closer distance
than the soils at a greater distance to the nearest neighbor devoted
for. In practical terms from a smaller data set, fewer instances were se-
lected, but they were balanced more equally and the opposite is true for
larger data sets. The results showed that the selection of a soil as the
nearest neighbor (k = 1) may cause excessive and unreasonable error
in estimating CEC. Thus, choosing k = 1 should be avoided.

The empirical equations that are given in this paper were found to
determine the optimum values of k and p. These equations were suit-
able for our data set and may not be suitable when the approach is ap-
plied for another data set. For this reason, the following test was
performed to check the validity of Eqs. (12) and (13) to determine the
optimal k and p values.

First, the entire data set were divided into 3 clusters on the basis of
soil characteristics and fuzzy k-means clustering (Triantafilis et al.,
2003). Then the 20% of the data in each cluster were used for testing,
and the other 80% saved as a reference data set. In each cluster the opti-
mal values of k and p were determined such that the value of RMSE was
the lowest. Also the values of k and p were estimated using Egs. (12) and
(13) and the program was re-run using the new values obtained by the
above mentioned procedure and the RMSE and MR of the model were
once more calculated.

Table 3 shows the obtained values of RMSE and MR. The results
showed that the proposed equations to determine k and p provide ac-
ceptable results. Although the use of Egs. (12) and (13) can possibly
slightly increase error, but the error is statistically not significant.
The maximum differences between the RMSE and MR of two
methods for determining the optimal values of k and p were 0.05
and 0.02 cmol ™ kg™, respectively. The findings suggest that these

Summary of results, in terms of root-mean-squared error (in cmol™ kg~ "), for the k-nearest neighbor technique with optimized settings and the neural network models. (SSC, sand, silt

and clay content; OC, organic carbon content).

2500 2000 1600 1200 800 400 200 100

Estimated method Input attributes Mean  SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
k-NN SSC + 0C 363 017 359 023 356° 017 357° 0077 3.81° 0203 385 010 3.88 024 394 0.17
0C + clay 362° 013 362 016 359* 012 358 011 379" 019 381° 011 391° 023 396> 0.11
ANN SSC + 0C 353 008 356" 009 348 004 352 007 360 009 363 011 3759 008 376% 0.12
0C + clay 358 007 360 006 354 005 358° 009 364> 007 366 010 370° 010 3.70° 0.13

2d shows the significant differences among RMSE values in each row.
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Table 5
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Summary of results, in terms of mean residuals (in cmol™ kg~'), for the k-nearest neighbor technique with optimized settings and the neural network models. (SSC, sand, silt and clay

content; OC, organic carbon content).

2500 2000 1600 1200 800 400 200 100
Estimated method Input attributes Mean  SD Mean  SD Mean SD Mean SD Mean SD Mean  SD Mean  SD Mean SD
k-NN SSC + 0C 0.01 031 —0.02 025 —0.032 023 014 026 005 033 —-033 045 —0.05 030 —0.18 046
OC + clay 0.10 0.14 0.12 0.09 015 013 0.11 018 0.13 035 026 029 0.10 036 017 043
ANN SSC + 0C —0.03 0.14 0.02 0.18 0.08  0.07 0.005 0.19 0.004 0.25 0.05 020 —022 032 0.053 042
0OC + clay —0.01 0.12 0.05 0.14 003 006 —0.1 027 003 021 0.04 030 —024 021 0.08 0.17
Table 6

Correlations (R?) between estimation errors and the various input attributes of the models
that were developed from the data sets with 2500 soils, using soil texture, organic matter
content and fractal dimension as input.

Sand Silt Clay ocC
k-NN 0.0020 0.0003 0.0024 0.0029
ANN 0.0005 0.0001 0.0008 0.00003

Eqs. 12 and 13 can be used for determining the optimal k and p to
estimate the CEC in our data set.

3.2.2. Comparison of k-NN and ANN Models

After determining the optimum values of p and k, k-NN approach
was run for the inputs and 8 different data set sizes. Also the ANN
model was performed to the same data input. On the both modeling
methods, the higher number of input variables can relatively improve
the estimation of CEC. But this improvement was not statistically signif-
icant at the 0.05 level. Furthermore, our results show that increasing the
size of the reference data set to a certain amount up to N = 1200 have
resulted in a significant reduction in prediction RMSE. However, no sig-
nificant difference between the accuracy of k-NN and ANN methods
were detected for N > 1200 (Tables 4 and 5). These findings show that
for users with a small data set, the loss in estimated performance by
using a similar data range does not seem to be significantly larger
than the loss with the ANN technique in the same situation. In most of
the cases, the average RMSE of ANN models were smaller than the k-
NN models. The maximum difference in term of RMSE between the
ANN and k-NN model was 0.28 cmol™ kg~ !. An independent one-
sample t-test was run and evaluated at the 0.05 significance level and
the results indicated that the RMSE values generated by the ANN and
k-NN models were statistically different in the case of a reference data
set with smaller sizes (N < 1200). But the results showed no significant
difference between ANN and k-NN models in the prediction of CEC in
reference data set when N was greater than 1200.

LN N
NN
10 - \ \\\ \ \
SININI

ocC sand silt clay

Input variables

Sensitivity (%)

%

The bias in estimating CEC were further evaluated (Table 5). The
largest unbiased estimate of CEC using ANN and k-NN methods were
0.39 and —0.33 cmol™ kg™, respectively. The bias in k-NN approach
was positive in most of the estimates. These results indicate that the
k-NN method underestimates the CEC values of the soil. Nemes et al.
(2006) also showed that the k-NN method estimated soil moisture con-
tent less than the measured value. The predictive ability of the k-NN and
ANN models in terms of the bias (MR) and overall error (RMSE) don't
depend on the combination of input attributes (Tables 4 and 5). The es-
timation quality is not significantly different when one set of input attri-
butes were used instead of another set. For example, the use of OC and
clay did not reduce considerably the quality of the prediction of CEC.
Other reports such as by Botula et al. (2013), rather indicated that the
accuracy of k-NN algorithm in predicting water retention was depen-
dent on the combined effect of the input attributes.

To further investigate, the correlations between estimation errors
and the input variables of the models were examined attempting to re-
veal any systematic distribution of the estimation errors along any of
the input variables that were used (Table 6). These correlations were
obtained using 2500 samples in the reference data set with all the
variables used in the model. The results were shown in terms of R?
of the linear regression between all the data pairs. In ANN model,
R? always remained smaller than 0.0008, which indicated that the
errors were independent of the model input. The k-NN technique
showed a higher R? values at <0.0029. The highest value of R? was
observed between the estimated error and OC, but the R? value
was still small enough (0.0029). Similar results were obtained for
other reference database sizes.

Sensitivity analysis of k-NN model showed that clay content and or-
ganic matter can explain 30% and 28% of CEC variance respectively
(Fig. 7). Peinemann et al. (2000) and MacDonald (1998) showed that
clay content and organic matter can also explain 29 and 20% of CEC var-
iance, respectively.

ANN model sensitivity analysis showed that clay content was the
most important variable in estimating CEC and it can explain 29% of
the changes in CEC, while the OC and sand content can explain 28 and

35

ANN

30 1

25 1

\
\

20 A

15 1

10 1

N\

silt

ocC sand clay

Input variables

Fig 7. Sensitivity analysis of output variable (CEC) to the input attributes of the models.
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23% of CEC variation (Fig. 7) respectively. Bayat et al. (2014) reported
that OC can explain 19% CEC variation using ANN model.

4. Conclusion

In this study, we adopted the k-NN algorithm developed by Nemes
et al. (2006) as a PTF to predict CEC from more easily measured soil
properties. This approach was non-parametric; it takes two parameters
that should be optimized before being implemented. These parameters
included the number of nearest neighbors represented as k and the
weighing between selected nearest neighbors represented by the
parameter p. Our results showed that the algorithm efficiency was not
dependent on these two parameters. The overall prediction perfor-
mance of the non-parametric k-NN approach was compared with ANN
models. It was found that k-NN approach could well compete with
many other methods of pedotransfer functions (PTFs) because the re-
sults showed no significant difference between k-NN approach and
ANN models. Similarly, the presented k-NN variant provides a great de-
gree of flexibility and extra options to the user. The user can, for example,
(i) incorporate additional data by appending to or replacing the reference
database without the need for developing new equations; (ii) develop the
estimations in real time, decide in real time what inputs to use, and may
change them from sample to sample if desired. There is also a room for
the user to be able to improve a specific local data with a locally available
data in a reference database without any significant effects on other avail-
able parts of a data in the reference database. For future research, we
recommend testing the ability of this technique to predict the CEC of
other soils found in the arid and semiarid regions.
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