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A B S T R A C T

A method has been tested to audit soil carbon stocks at the farm-scale. This is needed for emission trading
schemes and for tracking sustainability of the soil resource through time. The method begins with baseline maps
derived from national models which are then disaggregated with fine scaled environmental data via statistical
modeling; before optimally stratifying to guide soil sampling positions. Field sampling provides a statistically
valid estimate of soil carbon stocks, and the method is repeated through time to monitor any changes in stocks.
Case studies are presented from Australia and New Zealand.

While spatial downscaling is useful for generating soil maps relevant to the farm scale, the optimal stratifi-
cation of these maps for guiding soil sampling for baseline soil carbon auditing purposes should not be re-
commended if the national scale mapping is thought to be unreliable. Because of unresolvable differences be-
tween spatial scales associated with bias and incorrect specification of uncertainties, results from Australia
revealed stratified simple random sampling was not as efficient when compared to the less costly simple random
sampling. Conversely, results from New Zealand do show that stratified simple random sampling to be more
efficient than simple random sampling.

From soil sampling, clear differences in carbon stocks to 30 cm were observed when comparing the stocks
measured at sites from both countries. In New Zealand, soil carbon stocks were estimated to be as high as 101 t/
ha for the top 30 cm of soil. For the Australian sites which were all situated in the Hunter Valley region of NSW,
the highest measured soil carbon stocks were 25 t/ha for the top 30 cm. The largest soil carbon variance was
observed at the New Zealand hill country farm, where the landscape consists of alluvial terraces, complex broken
valley sides and a summit plateau mantled with volcanic ash. In Australia, the presence of subsoil pedogenic
carbonate (marl) contributed to high variance estimates relative to the other sites.

1. Introduction

Soil is the largest reservoir of terrestrial carbon, containing more
than three times that of the combined reservoirs of atmospheric carbon
and vegetation biomass (Jobbágy and Jackson, 2000). Soil carbon is a
dynamic variable, and can potentially influence the direction and
magnitude of carbon cycle-climate feedbacks (Friedlingstein et al.,
2014). With elevated levels of atmospheric CO2 there has been con-
siderable recent interest into carbon sequestration, whereby atmo-
spheric CO2 is converted into soil carbon which is long-lived. In effect,
this is reversing the carbon lost from soils historically through land use
change and degradation (Minasny et al., 2017; Paustian et al., 1997). It
has been estimated that soils worldwide have lost almost half their

initial carbon levels, and sequestration could exert a significant role in
mitigating greenhouse gas emissions (Stockmann et al., 2013).

There has been much global research investigating various man-
agement practices that promote soil carbon sequestration (Sanderman
and Baldock, 2010). Relatedly, there is also particular interest in the
investigation of efficient methods for the auditing of soil carbon (de
Gruijter et al., 2016). Examples of soil carbon monitoring programs that
have been initiated throughout the world, and how they operate are
described in Arrouays et al. (2014a). Some specific examples from
Europe and the US are described in Saby et al. (2008) and Spencer et al.
(2011) respectively. For monitoring soil carbon, first one needs to es-
tablish baseline levels (stocks), which is then followed up with suc-
cessive revisits to measure and monitor changes through time.
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The motivation of this particular research is to test a potentially
useful soil carbon auditing protocol that is applicable to the farm or
agricultural landholding spatial domain. The auditing protocol largely
builds upon the one proposed by de Gruijter et al. (2016) where their
objective variable was the estimation of whole farm soil carbon stocks
(SCS) with sufficient statistical confidence. The new development in
this context being the incorporation of disaggregated national and re-
gional scale digital soil carbon mapping.

For background context, using a direct measurement approach, de
Gruijter et al. (2016) established that design-based sampling is the most
appropriate approach for auditing soil carbon. With design-based
sampling, the implication is that the sampling locations are selected by
probability sampling and that the inference or estimation is based on
the sampling design used to select the sampling locations. The benefit of
this is that the subsequent inference is unbiased and free of any mod-
eling assumptions. The simplest method in probability sampling is by
Simple Random Sampling (SRS) where within a target area (a farm
etc.), a fixed number of locations where a sample is to be collected, are
selected at random and independently of each other. One common
approach towards improving the sampling efficiency of SRS is via
Stratified Simple Random Sampling (StSRS), where the target area is
divided into smaller sub-areas (strata) followed by SRS within each
stratum. On the proviso that the stratifying variables are appropriate,
the gains in efficiency of StSRS include a lower expected sampling
variance, such that the within strata sampling variances will be quite
different from each other, but collectively lower than that attained by
SRS. The outcome of this is that for the same sampling variance, a fewer
number of samples is required for StSRS compared to SRS.

de Gruijter et al. (2016) describe various ways to stratify a farm for
the intention of soil carbon auditing. These may be scaled according to
what is known about the spatial variation of soil carbon on the farm.
For example, if nothing is known of soil carbon variability, compact
geographical stratification may be used (Brus et al., 1999). This just
means stratification of the grid coordinates within the mapping domain,
and has the useful property of achieving spatial coverage of samples
within the sampling domain. The stratification may be improved if
there is some ancillary information available that describes the en-
vironmental spatial variation on the farm. For example, maps of ele-
vation (and subsequent derivatives), yield data, and any other data that
may have been collected via proximal soil sensing such as electrical
conductivity or gamma radiometrics as a few common types. With a
multivariate suite of ancillary data, stratification would entail a k-
means classification procedure. Stratification is best achieved however
if a digital soil map of soil carbon is available for use as a univariate
source of information. It is argued that a digital soil map of on-farm soil
carbon variation embodies the quantitative relationships between
covariates (ancillary information) and measured soil carbon together
(de Gruijter et al., 2016). With the univariate source of information,
stratification of a soil carbon map involves locating stratum boundaries
along the variable distribution.

The caveat to this type of stratification (using the soil carbon map as
a stratifying variable) is that there is an assumption the digital map is
error free. Obviously, this is a false assumption as it is known that
varied sources of uncertainty are propagated through to spatial pre-
dictions of phenomena including soil variables. Consequently, it has
become expected that in digital soil mapping literature, produced maps
also need to be accompanied by associated maps of quantified un-
certainty. Using digital soil map uncertainties, de Gruijter et al. (2015)
proposed an alternative stratification method whereby they are ex-
plicitly incorporated. The stratification method, called Ospats, uses a
raster of predicted values and associated error variances for deriving
the sampling strata. Ospats, by taking into account the prediction var-
iations is able to produce stratifications that represent transitions be-
tween the ‘knowing nothing about soil carbon variation’ (high mapping
uncertainty) and ‘knowing a lot about soil carbon variation’ (low
mapping uncertainty) situations. The theoretical and mathematical

explanation of Ospats is described in detail in de Gruijter et al. (2015)
with some details of this also described in the materials and methods
section of this paper.

Ospats is embedded into a soil carbon auditing protocol (detailed in
de Gruijter et al., 2016) that describes the steps to follow for first es-
tablishing baseline SCS (first round of mapping and sampling) through
to deriving the sample design for follow-up revisits in order to quantify
whether change has occurred. A useful feature of the protocol is that
information collected during the establishment or first round of sam-
pling are incorporated into the design of the next round of sampling and
subsequent revisits. This mechanism usefully allows for the continual
improvement of sample design efficiency and the realisation of more
accurate digital soil mapping, and ultimately more precise estimates of
on-farm SCS. A criticism of this type of space-time sampling design is
that the stratification at sampling time 1 differs from that of time 2, and
as a consequence the sampling locations also change, i.e. the sampling
locations are not fixed. This can lead to less precise estimates of the
change in carbon stocks, as the approach does not exploit temporal
correlation. This is indeed an issue, but from a practical perspective for
the auditing of soil carbon, it is not reasonable to sample in the same
place twice. For SCS auditing, it is necessary to lessen the opportunity
for unethical practices such as site tampering. Also estimations of SCS
are destructive. If one returns to a position one metre away there could
be an effect of short range variability, for example from tree roots or
manure additions (e.g. see Goidts et al., 2009 and Hedley et al., 2012).
Using Ospats and the associated stratification and sampling approach
seem appropriate trade-offs in this regard.

For universality of application however, Ospats and the associated
auditing protocol needs relevant farm scale digital mapping of SCS and
associated prediction uncertainties. In reality, with the exception of
some farms, most agricultural landholdings will not likely have this
type of mapping easily on hand.

To circumvent this issue, it was proposed that relevant digital
mapping could be acquired via the disaggregation or downscaling of
national or regional scale mapping (Malone et al., 2017). Projects such
as the GlobalSoilMap (Sanchez et al., 2009; Arrouays et al., 2014b),
have created the situation that acquisition of digital soil information
(with associated uncertainties) is at least a possibility across the spatial
extent of a farm. In reality though, while such large spatial extent di-
gital soil mapping products are invaluable for aiding the decision
making process at the spatial scales they were intended for, they are not
particularly relevant for considering issues at the farm management
scale, which is typically finer. Spatial downscaling can be invaluable in
this regard because the original mapping can be linked with fine scale
environmental data via statistical modeling to derive similarly fine
scale predictions of the target variable. The implicit assumption here is
that the covariate information is strongly related to the target variable,
which is being derived at the fine scale resolution.

To be tested in this study, is an addendum to the soil carbon au-
diting protocol established by de Gruijter et al. (2016). This is the
coupling together of spatial downscaling (for deriving the digital soil
maps with associated uncertainty) with the optimized stratification and
sampling (Ospats). This allows the protocol to be generalized and po-
tentially used where relevant farm scale soil carbon mapping is not
presently available.

With examples from field studies conducted in both Australia and
New Zealand, this paper reports on efforts to establish baseline SCS at
selected sites in those countries. The materials and methods detail some
of the underlying processes involved in spatial downscaling and opti-
mizing stratification and sample selection. We report the stocks for the
selected sites that were investigated. Importantly this paper discusses
practical issues of implementing the auditing protocol that is proposed,
and subsequently details some possible recommendations that require
practitioner decisions to be made.
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2. Materials and methods

The structure of describing the methods related to the generalized
soil carbon auditing protocol is staged with the following problem de-
finition:

What is required to estimate total soil organic carbon stocks (to a
specified soil depth) with an associated variance estimate for a given
landholding or farm where there is little to no existing soil carbon in-
formation?

In statistical terms, the farm or landholding is the “target universe”
(de Gruijter et al., 2006). In addition to the space dimension that the
target universe entails, there is also a time dimension. Auditing needs to
occur at a particular repeated time interval to establish a change in the
measure. In this research we do not estimate whether SCS have changed
or not. Rather, we describe methods for the establishment of baseline
on-farm SCS. In this study, the target variable for auditing SCS is re-
ported in tonnes per ha to a specified depth. For both Australia and New
Zealand the specified depth is 0–0.3 m. For different projects the target
variable may differ. For example the target depth could be different, or
the auditor may use cumulative mass of soil rather than fixed depth
sampling. There might be other variants too, but whatever the target
variable, it is important to specify it clearly at the outset of the auditing,
and honor it through time.

From the initial problem definition, the sequence of methods is as
follows and illustrated in Fig. 1.

1. The acquisition of national scale soil carbon mapping.
2. Spatial downscaling for generating relevant farm scale soil carbon

mapping with associated uncertainty quantification.
3. Running and optimization of Ospats for generating strata and sample

location selection.
4. Fieldwork component involving visiting the sites and specified

sample locations to collect soil for analysis of carbon stocks.
5. Statistical inference for quantifying on-farm SCS.

3. Site descriptions

3.1. Australia

Sites selected in Australia were centered upon the Lower Hunter
Valley region in New South Wales (32.83°S 151.35°E). Situated about
140 km north of Sydney, this region covers an extent of approximately
220 km2 (Fig. 2A). Further general information about this region is
described in Malone et al. (2014). There are varied land uses
throughout the region, but it is best known as a viticultural hub. Four
vineyards were selected from this area for this study. Each vineyard in
general terms is quite distinguished from the others in terms of pre-
valent management practices and soil types. The participating Aus-
tralian landholdings are shown in Fig. 2B:

1. AusCarb_S1: Relatively newly established vineyard (last
10–15 years) of multiple wine grape cultivars from previous land
use of native vegetation and pasture for grazing. The site has ap-
proximately 28 ha of managed vineyard which is situated pre-
dominantly on weathered in situ soils from underlying mudstone
parent materials. Chromic Luvisols and Dystric Nitosols (WRB) are
the predominant soil types at this site. Between vine row manage-
ment of soils involves little to no tillage with maintenance of per-
ennial grasses.

2. AusCarb_S2: Well established vineyard exclusively dedicated to
growing Semillon wine grapes. The site has approximately 7 ha of
managed vineyard. Soils are predominately Dystric Regosols (WRB)
composed of fine sandy to clay loam sediments that have been al-
luvially derived. Soils are lightly tilled every second row during
September (around bud burst) and post-harvest to improve soil
aeration and water capture. Continuous cover cropping is main-
tained in rows that are not tilled.

3. AusCarb_S3: Well established vineyard and open pasture land-
holding of approximately 94 ha. Soils, particularly where vines are

Fig. 1. Workflow for establishing baseline on-farm soil carbon stocks using a combination of downscaled national scale mapping and optimal stratification.
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established, often contain varying amounts of marl (loose, earthy
deposits of calcium carbonate material). Because of the presence of
marl in this environment, soils generally have neutral pH soils or
higher and classify out as Calcic Luvisols (WRB). Other soils are
predominantly either in situ weathered mudstones or a colluvium
material derived from these same parent rocks and are usually
Dystric Nitosols (WRB).

4. AusCarb_S4: Well established vineyard that has approximately 42 ha
of managed wine grapes. The vineyard supports multiple wine grape
cultivars upon soils that are quite variable. Soils can range from
uniform medium clay soils derived from mudstones (Dystric
Nitosols) to light textured (some places quite gravelly) alluvial soils

(Dystric Regosols). The vineyard has a long history of continuous
cultivation which occurs twice annually.

3.2. New Zealand

Sites selected in New Zealand are centred in the Manawatū region,
in the lower North Island (Fig. 2C). The predominant pastoral farming
of this region extends from flat alluvial river plains to rolling and steep
hill country. Two pastoral farms were selected to represent these con-
trasting landforms:

1. NZCarb_S1 is located at Massey University, in Palmerston North,

A B

C

1. NZCarb_S1
2. NZCarb_S2

Fig. 2. Locality maps of study sites in both Australia and New Zealand. The Lower Hunter Valley location in relation to New South Wales and Australia (1A). The Australian study sites
(1B). New Zealand study sites (1C).
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adjacent to the Manawatū River (S40.374493° E175.61498°; 34m
ASL). It is a 160 ha farm, managed as a low input, sustainable pas-
ture-based dairy farm with a once-a-day milking, spring calving
system. Ryegrass (Lolium perenne L.) and white clover (Trifolium
repens L.) pasture predominates and some fodder crops are also
grown. Soils are predominantly fluvial recent soils (Dystric
Fluvisols, WRB), forming in greywacke alluvium; drainage char-
acteristics vary from well drained to poorly drained, depending on
texture fineness of deposition layers and topographic position with
respect to the river. Average annual rainfall is approximately
1000mm, mean winter temperature is 8.5 °C and mean summer
temperature is 17.9 °C.

2. NZCarb_S2 is a 218 ha subcatchment of a 476 ha sheep and beef
farm owned by Massey University, 15 km NW of Palmerston North
(S40.336969°, E175.733440°; rising from 60m to 340m ASL). It is
managed as a productive sheep and beef farm, where stock are ro-
tationally grazed, with ewes set stocked two weeks prior to lambing.
The farm is divided into a flat land block (99 ha) and hill block
(119 ha). Average annual rainfall is 1100mm on the flat land, with a
summer dry period. Pastures are predominantly a perennial ryegrass
and white clover mix. Soils on the flat land are derived from
windblown loess, with compacted subsoils causing slow drainage
and waterlogging in winter time. These are Perch-gley Pallic soil
(Stagnic Planosols). On the hill slopes Firm Brown and Orthic Brown
soil (Fragic Cambisols and Cambisols) occur and on the summit
Allophanic Brown soils (Andic Cambisols) (Hewitt, 2010; FAO,
1998). The hill block is rolling to very steep hill country, with the
farm backing on to the slopes of the southern-most extent of the
Tararua ranges. Rainfall gradually increases with elevation to reach
1300mm of rain per year at the top of the farm where the en-
vironment is moist, relatively cool and wind-swept by prevailing
westerlies and south easterlies. The pastures on the hill block are
predominantly browntop, crested dogstail mixed with perennial
ryegrass and white clover.

4. Data acquisition: national soil carbon model

4.1. Australia

We acquired national SCS mapping that was produced by Viscarra
Rossel et al. (2014). This digital map quantifies the Australian national
extent spatial variation of organic carbon stocks to 0.3 m. This digital
map has a spatial resolution of 90m and also has quantified prediction
uncertainties, which are expressed as a 95% prediction interval.

4.2. New Zealand

Soil carbon data used for the New Zealand national model of SCS is
the same data that is used in the New Zealand Soil Carbon Monitoring
system to assess SCS changes with land use change to 0.3m soil depth
(McNeill et al., 2014). It contains the Historic Soils and Land Use and
Carbon Analysis System (LUCAS) soils database. The Historic Soils
database consists principally of National Soils Database data obtained
for soil survey purposes, with additional data from other providers. The
LUCAS soils database consists of soils data sampled from plots, princi-
pally from the natural forest land use class, although there are records
from other land use classes as well. There are 1320 Historic records and
435 LUCAS records, for a total of 1755 records (McNeill et al., 2014).
To develop the national SCS model, this point dataset was used with
environmental data layers associated with soil carbon formation (in-
cluding terrain, climate, land use and soil factors, e.g. stone content,
soil order) to model SCS at a 1-km grid nominal resolution. A gen-
eralized linear regression model (GLM) was used in preference to a
linear model, as the distribution of the carbon data is best described by
a gamma distribution, not Gaussian, as would be required for a linear
regression model. The GLM models the mean of the log of the soil

carbon as a linear function of explanatory variables, and allows both
the distribution of the response variable and the transformation of the
explanatory variables to be separately specified (NZAGRC, 2016).

5. Acquisition of farm scale environmental data

In order to determine the high resolution spatial pattern of phe-
nomena using a statistical downscaling approach such as dissever, there
is a need to acquire equally high resolution covariate data to drive the
downscaling. For the Australian and New Zealand sites this information
was acquired by proximal soil sensing, although this was not possible at
NZCarb_S2 where much of the terrain is too steep for driving across
with an ATV. The proximal soil sensor surveys acquired bulk soil
electrical conductivity and gamma radiometric data with associated
positional and height information using differential GPS equipment.
The proximal sensors used in Australia were a RSX-1 gamma radio-
metric detector consisting of a 4 L Sodium-Iodine crystal (Radiation
Solutions Inc., Mississauga, Ontario, Canada), and a Geonics DUALEM-
21S electromagnetic induction instrument (Geonics Ltd., Mississauga,
ON, Canada; DUALEM Inc. www.dualem.com, Milton, ON, Canada). In
New Zealand the same gamma sensor was used, and the electrical
conductivity surveying was undertaken using a Geonics EM38 sensor
(Geonics Ltd., Mississauga, ON, Canada). Data from these instruments
were logged continuously with measurements being taken approxi-
mately every 1m given an average speed of 5 km h−1. Each logged
measurement was tagged with a spatial reference coordinate using a
digital GPS receiver (SMART6-L GNSS; NovAtel, Canada). In Australia,
all three instruments were attached to a John Deer ATV and driven on
average to a parallel line spacing of approximately 15m. In New
Zealand the surveys were conducted at different times with the sensors
mounted onto an ATV (Hedley et al., 2004; Hedley et al., 2016). As
proximal surveys were conducted mostly within vineyards in Australia,
the 15m line spacing was equivalent to every second vine row. In New
Zealand the surveys used a swath width of 10m.

For some theoretical background, the gamma-ray spectrometer re-
cords the amount of radioactive isotopes in the soil (top 30–50 cm)
based on the principle that each gamma ray photon relates to a discrete
energy window which is characteristic of the source isotope (Minty
et al., 1998). Gamma radiometrics is a passive sensing technique that
detects the varying amounts of naturally occurring radioisotopes of
potassium (40K), uranium (238U-series) and thorium (232Th-series) from
soil as they produce high-energy gamma-rays with sufficient intensities
to be picked up by the detector. Additionally, a total count gamma-ray
measurement can be taken over the entire spectrum range too. Mea-
surements were recorded in counts per second (cps). The reason for the
interest in collecting this data for latter soil inference is that the
radioisotopic signature of soils has previously been linked to soil phy-
sical, chemical and geochemical properties including soil texture and
carbon, among others (Cook et al., 1996; Rawlins et al., 2009).

In terms of the electromagnetic induction as briefly mentioned
earlier, EMI sensors measure bulk soil electrical conductivity. From
these data, other soil properties of interest may be inferred using EMI
data like soil moisture, pH and texture, which through covariance will
also be useful for prediction of the spatial variation of soil carbon. The
DUALEM-21S (Dualem, Milton, ON, Canada) sensor used in this project
has dual-geometry (horizontal and vertical) receivers at separations of 1
and 2m from the transmitter. This configuration provides four si-
multaneous depths of conductivity sounding or depth of exploration,
that correspond to integrated conductivity measurements in mS m−1

for depths of 0–0.5m, 0–1m, 0–1.6m and 0–3.2 m.
For each of the sites, the raw data (GPS, radiometric, and EMI data)

were pre-processed then used as observational data for creating maps
based on a regular 10m grid cell resolution. We used punctual ordinary
kriging to make these maps for each variable. Secondary terrain vari-
ables, slope gradient and topographic wetness index (function of slope
and catchment area) were derived from the ground elevation. In
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summary, for each Australian and New Zealand site we amassed the
following fine scale covariate maps for use in the spatial downscaling of
the national carbon map:

• Digital Elevation model: Elevation, slope gradient, terrain wetness
index

• Gamma radiometric data: Total count, gamma K, Th and U

• Bulk soil electrical conductivity: 0–0.5m, 0–1m, 0–1.6m and
0–3.2m (Australia). 0–0.75m and 0–1.5 m (New Zealand).

At NZCarb_S2, only LiDAR survey data was available, as the terrain
was mostly too steep for vehicle mounted proximal soil surveying. The
LiDAR data was collected by a local aerial mapping company and
provided as a 3D geolocalised classified point cloud at approximately 1
pulse per m2. The classified point cloud was used to create a digital
elevation model at 10m resolution by interpolating the elevation values
of the ground points with a natural neighbor algorithm, using the
“spdinterp” program of the Sorted Pulse Data (SPD) software library
(Bunting et al., 2013). For the NZCarb_S2 site, the digital elevation
model and derived terrain attributes were used as covariate data layers
for the downscaling process.

6. Spatial downscaling of national digital soil maps

Spatial downscaling is a critical component of the proposed auditing
protocol as it allows the delivery of relevant farm scale mapping to be
used in the Ospats algorithm. However, in order to implement Ospats, a
requirement is to have associated maps of the prediction variance.
Within the context of spatial downscaling, one approach for doing this
was proposed in Malone et al. (2017) whereby simulations of the na-
tional mapping are derived, that are subsequently downscaled using the
dissever algorithm as described in Malone et al. (2012). Another ap-
proach would be with area-to-point kriging such as that shown in Orton
et al. (2016). This approach is based on a statistical model, and results
in a map with disaggregated predictions, as well as a map with kriging
variances. From Malone et al. (2017), realisations are made in con-
sideration of the prediction variance associated with the national
mapping, such that the mean and variance of the simulated mapping
will be same as the prediction and variance of the national mapping
product. To numerically explore the uncertainty space, a random
component (with some specified spatial correlation structure) is in-
troduced into the simulations. This can efficiently be done using un-
conditioned Gaussian random fields with specified covariance para-
meters including nugget, partial sill and anisotropy etc., (Wood and
Chan, 1994). The procedure for generating the unconditioned random
fields is commonly referred to as sequential Gaussian simulation (Chiles
and Delfiner, 1999). After generating a random field, we can then de-
rive a possible realisation by using the following equation:

= +sim σx μmap (1)

where simmap is the simulated map, σ is the map of the standard de-
viation of predictions from the national mapping, x is the Gaussian
random field map, and μ is the national map. For each of the sites in
Australia, 100 realisations were generated. For the covariance para-
meters of the random fields we selected the distance parameter that was
found from the fitted variogram of the national map predictions from
each site. The sill and nugget were set to 1 and 0 respectively. The
underlying assumption with these parameters is the random field has
unit variance, and the variogram has no error at 0m separation dis-
tance.

The simulated national scale maps are then spatially downscaled.
The underlying objective of dissever is to converge towards a solution
that is mass-preserving, i.e. the mean of fine scale predictions is
equivalent to the associated value of their encapsulating coarse scale
pixel (of the national scale mapping). In its original conceptualization,
downscaling is performed by modeling the relationship between fine

resolution covariates and the coarse scaled map using a weighted
generalized additive model (GAM), followed by subsequent iterations
to achieve mass balance. Work by Roudier et al. (2017) generalized
dissever through the allowance of users to select from a suite of potential
models besides GAMs. In fact one way to implement dissever is to op-
timize the downscaling by comparing outcomes from different model
structures then selecting the one where error is minimized. For the
work carried out in Australia, the selected model type used was the
quantile regression forest model (QRF) which is a generalized im-
plementation of the random forest model from Breiman (2001). The
selection of QRF was based on its superiority compared with other
candidate models including Cubist models, Random Forests and GAMS
(results not shown). A full description and theoretical discussion of the
QRF model can be found in Meinshausen (2006). In words, the dissever
algorithm involves (mathematical notation of the algorithm is detailed
in Malone et al., 2012):

Initialization Steps:

1. Create fine grid coarse resolution map (source map) via nearest
neighbor resampling. Resolution and extent of the fine gridded map
is the same as that of the available predictive covariates to be used
for regression modeling.

2. Regress (using a selected model type) fine gridded values against
suite of available covariates.

3. Upscale via averaging the fine gridded estimates to source map re-
solution.

4. Estimate deviation from mass balance for each coarse grid pixel i.e.
mean of fine grid values= value from associated pixel of source
map.

Iteration steps:

5. Correct fine gridded estimates with deviation factor from step 4 (or
step 10 if iteration number is greater than 1).

6. Regress fine gridded values against suite of available covariates.
7. Upscale via averaging the fine gridded estimates to source map

resolution.
8. Check whether upscaled estimates from step 7 are changed from

previous iteration (or step 3 if performing iteration 1).
9. If estimated change (from step 8) is greater than some pre-defined

threshold proceed to next step, otherwise STOP. In Malone et al.
(2012) an averaged absolute difference between upscaled map from
present iteration and previous iteration was used. An arbitrarily
selected threshold of 0.001 was used to determine if iteration
should proceed or not.

10. Estimate deviation from mass balance for each coarse grid pixel i.e.
mean of fine grid values= value from associated pixel of source
map. Go back to Iteration step 5.

For each simulated national map, dissever used the farm survey
mapping as predictive covariates. One hundred simulations of the na-
tional mapping was performed which ultimately created 100 down-
scaled maps. All 100 downscaled maps were stacked together from
which the mean and variance were then calculated. Added to the var-
iance was a measure of the downscaling error in terms of the deviation
from mass balance. This deviation measure is estimated for every pixel
at each iteration of the dissever algorithm. Once dissever terminates we
estimate the mean square error which in this case is:

∑= −
=

MSE
N

CV FV1 ( )down
i

N

i i
1

2

(2)

where N is the number of pixels of the coarse scaled map, and CVi is the
mapped value from the coarse map (national map) at pixel i, while FVi

is the average of the downscaled predictions from the last dissever
iteration encapsulated by the same pixel i.
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The workflow for deriving downscaled outputs in New Zealand
entailed the implementation of the R package version of dissever
(Roudier et al., 2017). Random Forest models were used in this in-
stance. In order to quantify the uncertainties with the downscaling,
bootstrapping (using 500 iterations) of the final dissever model was
used to derive the upper and lower predictions, along with a mean
prediction for each pixel. The workflow that was conducted in New
Zealand was the original way that uncertainties were characterized
prior to the formal simulation approach that was proposed in Malone
et al. (2017) and used for the Australian sites in this study.

7. Using Ospats for stratification and sample selection

With farm scaled maps and associated uncertainties generated via
spatial downscaling, implementation of the Ospats algorithm follows.
The objective is to generate an optimal stratification of the target uni-
verse given those two required inputs. Summarizing from de Gruijter
et al. (2016), given an initial stratification solution (which could be a
compact geographical stratification, or k-means clustering of ancillary
data etc.), through an iterative reallocation, grid points are assigned
and re-assigned to strata of which there are a specified number. An
objective function O is then estimated from this stratification. O is the
model-based prediction of the sampling variance of the estimated
mean, and needs to be minimized (via iteration). Pending further
rounds of re-allocation and estimation of O, iteration stops when O is
minimized.

Naturally, consideration in regards to the number of strata and
number of samples is necessary. de Gruijter et al. (2016) describe the
approaches for optimizing those parameters. They approach the issue
using a Value of Information approach (Morgan et al., 1990) by com-
paring the difference in data value and data cost (which is equivalent to
an expected financial gain) with different sample sizes and stratification
configurations. The intention is to increase the expected financial gain,
taking into account the costs associated with sampling, the expected
reward for sequestering carbon, plus the expected sampling variance.
From eq. 21 in de Gruijter et al. (2016) the optimal sample size of a
farm can be estimated as:

⎜ ⎟′ = ⎛
⎝

∙ ∙ ∙
∙

⎞
⎠

n
CP A Z O

f 2
y

2/3

(3)

where n′ is the optimal sample number, CP is the carbon offset price, or
the amount in dollar terms, the price of sequestered carbon per mass
unit (for demonstrative purposes we use A$20 t−1), A is the area of the
farm in hectares, Zy equals 1.645 (90% quantile of the standard normal
distribution), O is the O/N (where O is the objective function from
Ospats and N is the number of grid points discretising the farm), and f is
the cost of sampling and analysis per point of the farm — for the
Australian sites the value selected was $120 given prior experience of
sampling and its costs. Zy is set to 1.645 because we wish to be able to
determine with 90% confidence whether carbon stocks between the
first and second sampling campaigns are different, when we take into
consideration the sampling variance. For the first round of sampling i.e.
the establishment of baseline SCS (as we have not sampled yet), we
assume the expected sampling variance to equal O . It is upon further
resampling that we take into consideration the sampling variance of the
previous sampling together with that from Ospats to determine the
optimal sample number. In practice, selecting the optimal sample
number is estimated for different strata number configurations. Fol-
lowing this we can then estimate the optimal number of strata. Again,
following on from de Gruijter et al. (2016) this is estimated by evalu-
ating the incremental financial gain estimated for each stratification
compared to that found when not using any stratification. To determine
this, one needs to use Ospats with no stratification, and then determine
the optimal sample number using the equation above. The optimal
strata number is the one where the incremental financial gain is

greatest. From de Gruijter et al. (2016) the incremental financial gain is
estimated as:

⎜ ⎟= ∙ ∙ ⎛
⎝ ′

−
′

⎞
⎠

+ ′ − ′G H CP A Z
n

O
n

f n n( ) 2 O 1 1 ( )inc y H
H

H1
1

1
(4)

where OH is the value of O for the Ospats stratification with H strata.
Similarly O1 and n1′ are the O for the Ospats stratification and optimal
sample number where stratification number equals 1.

After optimizing the strata and sample size for each site, we ad-
justed the actual sample number upwards slightly (in most cases) to
ensure that at least four samples were collected from each strata (it is
necessary to have at least two samples from each strata in order to
estimate the within strata variance). Neyman allocation was used to
assign the optimal number of samples to each stratum. This is effec-
tively an allocation proportional to the product of stratum area and
within stratum standard deviation.

In New Zealand, an operational constraint of the project meant that
there were limited time and resources available to optimize soil sam-
pling for SCS auditing. The sites used in New Zealand had existing data
from recent surveys. This did not affect the integrity of the process as
these existing sites were assigned to the derived Ospats strata.

8. Soil sampling and statistical inference

With the sampling configurations produced for each site, a soil
sample was collected. At each site, duplicate samples were collected
very close to each other. The first duplicate was used for estimation of
soil carbon concentration, and the other duplicate was used for esti-
mation of soil bulk density. Samples consisted of 0.3 m deep cores
where possible (with known volume) which were extracted using a
vehicle mounted hydraulic coring instrument in Australia. In addition
to estimating SCS to 0.3m, in Australia, SCS estimates were also de-
rived for the 0–5 cm, 5–15 cm, 15–30 cm depth intervals. In New
Zealand SCS estimates at NZCarb_S1 were derived for the 0–10 cm,
10–20 cm, and 20–30 cm depth intervals, while at NZCarb_S2 the depth
intervals were 0–5 cm, 5-10 cm, 10–20 cm, and 20–30 cm.

Estimation of soil bulk density was made by dividing the oven dried
(105 °C) soil mass of the sample (2nd duplicate sample) by the volume
of the soil. Total soil carbon concentration of the samples (1st duplicate
sample) was determined via dry combustion method using a vario MAX
CNS analyser (Elementar, Germany) in Australia, and Leco CNS
Analyser in New Zealand (© 2016 LECO Corporation, MI, USA). The
analysed samples were a priori subjected to air drying before 2-mm
sieving. Any rocks/gravel were removed and weighed during the
sieving process so that carbon stocks could be adjusted for gravel
content. Sieving was by mechanized mortar and pestle grinding for
2minutes for Australian soils, and by mechanised 2-mm roller sieve for
New Zealand soils. Approximately 750mg of fine grinded soil was
analysed for total carbon for all analysed samples in this project.
Carbon stocks are given in terms of tonnes per hectare for specified
depth. Carbon stock is estimated as:

=

×

× × −

− −

−

−

Carbon Stock (t ha ) Bulk Density (g cm )

Carbon Concentration (g kg )

depth of soil (cm) (1 Gravel (g kg ))

1 3

1

1

(5)

For the Australian sites, we then applied the following depth in-
terval weighted equation:

− = ×

+ − ×

+ ×

Carbon Stock:0 0.3 m (Carbon Stock:0–5 cm 0.167)

(Carbon Stock:5 15 cm 0.333)

(Carbon Stock:15–30 cm 0.500) (6)

Subsequently we can also provide estimates of proportion of carbon
stocks for each depth relative to the whole auditing depth (0–0.3 m).

B. Malone et al. Geoderma Regional 13 (2018) 1–14

7



Parameters of the depth interval weighting in eq. 6 were adjusted ac-
cordingly for the NZ sites.

Estimation of total on-farm carbon stocks, together with associated
sampling variance of the mean is derived via Stratified Simple Random
Sampling design inference. From de Gruijter et al. (2006) the overall
mean is equated as:

 ∑= ∙
=

z a zSt
h

H

h h
1 (7)

where ZSt is the overall mean, H is the number of strata, Zh is the within
stratum mean and ah is the relative area of the stratum. The sampling
variance of the estimated mean is:

  ∑= ∙
=

V z a V z( ) ( )St
h

H

h h
1

2

(8)

where  V Z( )St is the sampling variance and  V Z( )h is the sampling var-
iance of the within stratum mean, which is estimated as:

  ∑=
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−
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1
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h
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where nh is the number of observations in stratum i, and zhi is the ob-
served value within stratum i. The 100(1− α) % confidence interval for
ZSt is given by:

 ± ∙−z t V z( )St α St1 /2 (10)

where t1−α/2 is the 1− α/2 quantile of the Student distribution with
n− 1 degrees of freedom where n is the number of collected samples
from the site.

In order to assess whether the stratified sampling design used at
each of the sites were deemed to be efficient, we used the Brus (1994)
method that was designed for testing the stratification effect using the
collected sample data. This entails estimating the spatial variance
within a farm from the StSRS (Eq. 4, Brus, 1994). With this value, it is
divided by the number of sampling locations (sample size) to obtain the
sampling variance of the estimated mean for simple random sampling
(i.e. no stratification). This sampling variance of the estimated mean
divided by the sampling variance of StSRS, is the stratification effect. If
this value is larger than 1, it means that StSRS is more efficient than
simple random sample. Below zero means stratification was not effec-
tive and a simple random sample would have sufficed.

9. Results and discussion

9.1. Spatial downscaling of national digital soil maps

9.1.1. Australia
The SCS map from Viscarra Rossel et al. (2014) was clipped to the

bounding extents for each landholding. Fig. 3A shows the national scale
mapping with associated prediction standard deviation for AusCarb_S1.
Fig. 3B shows the mean and standard deviation estimated by stacking
the maps that were generated by Gaussian simulation of the national
mapping for the same study area. Finally Fig. 3C shows the downscaled
carbon stock map with associated standard deviation. These composite
of digital soil maps have also been produced for the other AusCarb sites
and are provided as Supplementary material 1. A visual analysis of the
maps in Fig. 3, shows that the spatial pattern of the national mapping
(both predictions and uncertainties) is adhered to via the Gaussian si-
mulations. Table 1 summarizes the comparative results between map-
ping products in terms of the averages of the map predictions and the
standard deviation. For example, for AusCarb_S1 the mean value from
the national mapping predictions was 75.32 t ha−1 while for the mean
of the Gaussian simulations the average was 75.01 t ha−1. Note that
these estimates are model based estimates of the mean, while estimates
of the mean based on StSRS that follow further on are design based

estimates. We calculated the model based means here purely for simple
comparison between the national mapping products and associated
downscaled outputs. In terms of the standard deviation maps, the
means were 6.10 t ha−1 and 6.02 t ha−1 respectively. The concordance
between both map products (predictions) was 0.95, while for the
standard deviation maps, it was 0.65. This general result was observed
for the other Australian study sites too. Ascertaining the reason why
restoring the uncertainty estimates was not as closely adhered to when
compared with the target variable predictions warrants further in-
vestigation. It is possible that the spatial relationship between the target
variable and associated uncertainty is non-linear, meaning that the ef-
fectiveness of Gaussian simulation is slightly compromised. However,
some initial investigative steps could first look at the possibility of
generating significantly more simulations to better sample from the
underlying uncertainty, or considering spatial models that incorporate
anisotropic variation.

Table 1. Comparisons of means of carbon stocks for each site on the
basis of the available national scale mapping, mean of the simulations
derived from the national scale mapping (and their correspondence),
and of the mapping outputs derived from spatial downscaling. The last
column indicates the estimated deviation, in terms of a mean square
error between simulated national scale mapping outputs and the
downscaled maps derived from them. Bracketed numbers for Australian
sites are standard deviations while NZ sites report a mean with upper
and lower 95% confidence level; na: not applicable.

In terms of the digital map derived from spatial downscaling there is

8

4

A

B

C

National Mapping
Prediction StDev

National Mapping Simulations
Mean StDev

Downscaled Predictions
Mean StDev

84

70

Carbon stock 
(t/ha)

Standard 
deviation 
(t/ha)

0 500250 m

Fig. 3. Digital maps of soil carbon for the AusCarb_S1 site. Mapped predictions and
standard deviation from Viscarra Rossel et al. (2014), which corresponds to the national
scale mapping product (A). The mean and standard deviation of simulated realisations
made from Gaussian simulations of the national scale mapping product (B). Downscaled
soil carbon mapping showing the mean and standard deviation of predictions (C).
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quite strong correspondence relative to the national mapping.
Obviously the downscaled mapping shows much more fine-grained
variation, which is attributed to the covariates that were used in the
dissever algorithm. Results summarized in Table 1 confirm this corre-
spondence where the mean of the downscaled map predictions are very
close to that for the national mapping at each Australian site. The re-
latively higher uncertainty estimate associated with the downscaling is
attributed to the incorporation of the downscaling uncertainty which
was quantified as the mean square error (MSE) of deviation between
national mapping and downscaled predictions. It is intuitive to expect
higher uncertainties on average in this regard because predictions are
more localized compared to the coarser grid of the national mapping.
Furthermore, there has not been any additional observed data to sup-
port the predictions at the finer scale, which as a consequence the
predictions at the fine scale will inevitably be more uncertain. On
average, over the 100 downscaling realisations, the deviation MSE
ranged between 1.17 (AusCarb_S4) and 4.24 (AusCarb_S2). The relative
difference can be attributed to the differentiated relationship of the
target variable (carbon stock) to the predictive covariates between sites.
For AusCarb_S4 the considered covariates appear to be adequate to the
task, but for AusCarb_S2 we would perhaps need to consider further
covariate data to improve the downscaling procedure. As the land use
and management appears to be homogenous across this site, a land use
map alone would not be helpful. Related information in terms of ve-
getation indices such as plant cell density estimates or time series es-
timates of NDVI could perhaps be useful for further consideration.

9.1.2. New Zealand
The NZAGRC national carbon map (NZAGRC, 2016) was clipped to

the bounding extents for each landholding. Fig. 4A shows the national
scale mapping with associated prediction standard deviation for
NZCarb_S2. Fig. 4B shows the downscaled carbon stock map with as-
sociated standard deviation. Similar maps were also produced for
NZCarb_S1 and are provided in Supplementary Material 1.

What can be observed on Fig. 4 is a good correspondence between
the national mapping and downscaled mapping in terms of the mean
SCS predictions. On the other hand, the spatial variation of the un-
certainty from the national map is not retained through to the down-
scaled estimated of the uncertainty — it appears the uncertainty is re-
latively lower for the downscaled map compared to the national map.
This is attributed to the method used for downscaling the national
maps, where the approach used by Malone et al. (2017) propagates the
uncertainty via simulation through to the downscaled maps. Using the
dissever R package directly as was done for the New Zealand sites, the
uncertainties are estimated via a bootstrapping procedure that con-
siders only the target variable data and not the associated uncertainty
of those predictions. In summary, estimation of the uncertainties of the
downscaled mapping can be achieved via the approach of Malone et al.
(2017) or using the dissever R package (Roudier et al., 2017). However,
the approach of Malone et al. (2017) is recommended as it explicitly
deals with the uncertainty of the map that is to be downscaled.

9.1.3. Ospats
At each site, the downscaled maps were first processed using aerial

imagery to clip out areas where soil sampling could not possibly be
performed. For example at AusCarb_S2, a creek runs the north-south
direction through the landholding. We subsequently focused only on
the areas dedicated to vineyard production. Road obstacles and water
catchment areas were similarly excluded from the auditing area at
AusCarb_S4 and other sites. A similar process was followed for NZ sites,
clipping the road, housing and waterways from the downscaled maps.
For NZCarb_S2 in particular, accessibility due to difficult terrain meant
to only a sub-catchment of the property could be audited at the time of
the study.

For Ospats, to optimize the strata number for each site we con-
sidered outcomes for between 2 and 10 strata. Optimal sample number
was estimated using eq. 4. Table 2 summarizes the outcomes from
running Ospats for each site. Two strata were optimal for AusCarb_S2,
three strata were optimal for AusCarb_S1, AusCarb_S3, and AusCarb_S4,
and four strata were optimal for NZCarb_S1 and NZCarb_S2. To ensure
at least 4 samples be collected from each strata, we increased the total
number of samples slightly to meet this criteria when required. In total
we selected, 16, 10, 20, 30, 50 and 100 samples from AusCarb_S1, S2,
S3, S4 and NZCarb_S1 and S2 respectively. Fig. 5 shows the stratifica-
tions made for each site, upon which the sampling locations are over-
laid.

Table 2. Strata configurations, recommended sample sizes, and
sample allocations for each site. Note that New Zealand sites did not
implement steps for optimal stratification and sample number. For all
sites, Neyman allocation was used to determine the number of samples
to be taken from each stratum.

9.1.4. Statistical inference
Soil carbon stocks for each of the sites are summarized on Tables 3

and 4 for Australia and New Zealand respectively. In Australia, in terms
of the 0–0.30m depth, the highest stocks were attributed to AusCarb_S3
with 25.93 t ha−1 of carbon. However, relative to the other sites, there
was also the highest amount of uncertainty associated with this mean
carbon stock estimate, where it ranged between 16.58 t ha−1 and
35.28 t ha−1. One contributor for this relatively higher amount of un-
certainty is that there is a significant amount of inorganic carbon pre-
sent around this site by way of the calcium carbonate rich marl parent
materials. The presence of marl was not observed for any of the other
Australian sites. At AusCarb_S3, the marl does not occur homogenously
across the site spatially, or even at a specific depth. Rather it occurs in
seemingly discrete parcels whose spatial pattern is difficult to de-
termine, and it can occur in any depth of the profile.

Table 3. Estimated soil carbon stocks and upper and lower con-
fidence bounds for each Australian site for 0–0.3m and specified depth
intervals. A proportion of the total carbon stock is provided for each
depth interval. Stratification effect is given for the 0–0.3m depth in-
terval,

The relatively higher uncertainty about the mean carbon stocks at
AusCarb_S3 seems to be an exception when compared with the other

Table 1
Comparisons of means of carbon stocks for each site on the basis of the available national scale mapping, mean of the simulations derived from the national scale mapping (and their
correspondence), and of the mapping outputs derived from spatial downscaling. The last column indicates the estimated deviation, in terms of a mean square error between simulated
national scale mapping outputs and the downscaled maps derived from them. Bracketed numbers for Australian sites are standard deviations while NZ sites report a mean with upper and
lower 95% confidence level; na: not applicable.

Site A. National mapping B. National MAPPING simulations Concordance between A and B C. Downscaled mapping Downscaling deviation MSE

AusCarb_S1 75.32 (6.10) 75.01 (6.02) 0.95 (0.65) 74.95 (6.38) 2.76
AusCarb_S2 75.01 (5.86) 74.60 (5.77) 0.94 (0.71) 74.51 (6.24) 4.24
AusCarb_S3 73.77 (5.58) 73.48 (5.64) 0.98 (0.73) 73.97 (6.36) 1.88
AusCarb_S4 75.02 (5.81) 74.71 (5.88) 0.94 (0.65) 74.44 (5.96) 1.17
NZCarb_S1 77.40 (63.47–91.34) na na 64.40 (61.68–67.12) na
NZCarb_S2 93.77 (54.40–133.15) na na 93.26 (84.19–102.32) na
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Australian sites. The carbon stocks at the other sites are relatively
lower, but the confidence intervals are much narrower, indicating more
certainty about the means. AusCarb_S2 has less than half the stocks than
that at the nearby AusCarb_S1. This is likely due to distinctive soil types
between these two sites where soils are predominantly clayey at
AusCarb_S1 compared to AusCarb_S2 which are predominantly fine-
sandy clays. Consequently the relative capacity of these different soils
to store carbon will also be quite different. Vineyard management is
also likely to play a significant role in the amount of carbon stocks. It is
known that the between vine management at AusCarb_S1 involves no
tillage and maintenance of perennial pastures, While at AusCarb_S2,
tillage twice a year is common practice. But because these two sites
have distinctive soils, the scope of this research does not permit an
analysis of the relative differences in SCS under different management
regimes. A basic analysis though between AusCarb_S1 and AusCarb_S4

– which do have similar soil types, but quite different vineyard man-
agement practices shows quite distinct differences in carbon stocks
when we consider the depth variable. AusCarb_S4 has a long history of
annually till between vine row spaces. At this site, we have estimated
that 53% of the carbon stocks are found between 15 and 30 cm, and
11% in the top 5 cm. At AusCarb_S1 we estimated 40% and 23% re-
spectively for the same two depth intervals. Note that these percentage
estimates are based on the mean stocks and do not consider the un-
certainty about the means.

Comparison between SCS at each of the Australian sites as de-
termined by spatial downscaling with those stocks estimated from
samples collected (by StSRS) in the field, show some significant dif-
ferences. The impression from the downscaled outputs is that the
carbon stocks at each site are relatively the same (See Table 1). From
the soil sampling, it is evident that this situation is not true. From this
comparison, obviously, the national mapping for this area (the Lower
Hunter Valley in general) is biased positively in a large way, improperly
inflating the estimated carbon stocks. Unfortunately without any prior
data, the spatial downscaling methodology that was used in this study
does not correct for the bias; rather the objective of the downscaling is
to achieve mass balance between coarse-grained and fine-grained
mapping. The implication of this outcome is that the stratification is
performed on data that do not represent the site-specific conditions of
soil carbon variation. This will inevitably result in sampling in-
efficiencies. Indeed, Table 3 indicates that for the Australian sites,
StSRS is not as efficient compared to a simple random sample.

Workflows for incorporating a bias correction step in the spatial
downscaling procedure has been show previously for soil carbon
mapping by Malone et al. (2017) where field observations of carbon
concentration were incorporated into the dissever algorithm. This

Carbon stock 
(t/ha)

Standard 
deviation 
(t/ha)

0 21 km
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Fig. 4. Digital maps of soil carbon for the NZCarb_S2 site. Mapped predictions and standard deviation from NZAGRC (2016), which corresponds to the national scale mapping product
(A). Downscaled soil carbon mapping showing the mean and standard deviation of predictions (B).

Table 2
Strata configurations, recommended sample sizes, and sample allocations for each site.
Note that New Zealand sites did not implement steps for optimal stratification and sample
number. For all sites, Neyman allocation was used to determine the number of samples to
be taken from each stratum.

Site Optimal strata
number

Optimal
sample size

Actual sample
allocation

Actual total
sample size

AusCarb_S1 3 16 6, 6, 4 16
AusCarb_S2 2 6 6, 4 10
AusCarb_S3 3 27 12, 11, 7 30
AusCarb_S4 3 17 10, 6, 4 20
NZCarb_S1 4 na 25, 25, 25, 25 100
NZCarb_S2 4 na 13,8,19,10 50
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evidently corrected the substantial bias that was apparent in the na-
tional mapping for the area that was investigated the north-western
NSW, Australia. Similar bias correction procedures for downscaling
have been demonstrated in other studies, particularly those concerned
with climatic data applications e.g. Déqué (2007), Wilcke et al. (2013).
One limitation of using this additional bias correction step is that there
needs to be an availability of existing observations to adjust the
downscaled outputs, which was not the case for the Australian sites.

At each NZ site, a comparison between SCS determined by down-
scaling with those estimated by collecting field samples (by StSRS)
show a good match (Table 1 and Table 4) for the 0.3m soil depth. This
is explained by the fact that covariates used to develop the national
model and drive the disaggregation process relate quite well to

processes influencing the accumulation of carbon in surface soil hor-
izons. Stratification was clearly warranted at the NZ sites as indicated
by the stratification effect values shown on Table 4 all being greater
than 1. While we are confident in this result, note that due to opera-
tional circumstances, the samples were not selected with probability
sampling. Rather, pre-existing samples (collected via simple random
sampling) were allocated to the Ospats-derive strata. Consequently, in
strict adherence to sampling theory, the statistical parameters derived
from StSRS inference are potentially biased. We doubt this to be sig-
nificant due to the density of sampling that was carried out at each of
the two sites however.

Table 4. Estimated soil carbon stocks and upper and lower con-
fidence bounds for each New Zealand site for 0–0.3m and specified

AusCarb_S1 AusCarb_S2

AusCarb_S3 AusCarb_S4

NZCarb_S1
NZCarb_S2

Fig. 5. Stratifications and sample configurations for each Australian and New Zealand site. Color represents stratum. See Table 2 for details.
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depth intervals. A proportion of the total carbon stock is provided for
each depth interval.

10. General discussion

Public availability of soil carbon mapping via national carbon
models means that most people are able access information specific to
their own landholding. This study has tested a protocol for deriving on-
farm estimates of soil carbon stocks using a combination of spatial
downscaling and optimal stratification. A generalized protocol flow-
chart is provided in Fig. 1. Here, this includes the acquisition of na-
tional scale soil carbon mapping, and relatedly the acquisition of re-
levant farm scale environmental data. This is followed by
implementation of spatial downscaling where the objective is to derive
relevant farm scale soil carbon mapping with associated uncertainty
quantification. Ospats is then used to derive the sampling strata, fol-
lowed by the associated field sampling then laboratory analysis and
statistical inference to derive a baseline audit of the on- farm soil
carbon stocks.

A rather major issue encountered for the Australian component of
this study was the use of downscaled national mapping being positively
biased and ultimately inaccurate. This led to an inappropriate opti-
mized stratification and sampling recommendations. The result being
that the stratification effect contributed to the overall uncertainty about
the mean estimates of SCS at each location. Despite promising results
for the tested protocol in NZ, some further consideration is warranted
for improving the sampling efficiency in the baseline establishment
round of sampling. Perhaps the initial sampling should be optimized
based on available financial resources, or aim for geographical coverage
or spatially balanced sampling (Brus et al., 1999; Stevens and Olsen,
2004; Brus, 2015).

Some consideration needs to be made with respect to the auditing

process once current baseline carbon stocks have been established on
the farm. As indicated in de Gruijter et al. (2015) an updated farm-scale
map is used for input in Ospats. If digital soil mapping is used, this step
simply entails incorporating the samples collected from the first round
of sampling with any other existing samples; after which the new digital
soil map is produced. However, even with these additional samples, the
density of the sampling may still be impractical for deriving an ac-
ceptable digital soil map to use in the second round of sampling.
Therefore we propose a number of possible routes to follow if digital
soil mapping alone is not going to be suitable. The selected option is
determined on the basis of the quality of available information.

1. Perform spatial downscaling as was done for the first round. It is
inevitable that with national soil mapping being digitally based, the
underlying models will be dynamic in the sense that they can be
updated pending the acquisition of new data. This will achieve the
result of a new realisation of the national mapping and associated
prediction variance which may or may not be improved. It is likely
in the future that nationally directed efforts for updating and im-
proving soil mapping will occur as a globally collective response to
addressing environmental issue and land resource monitoring. With
this option, some consideration of the feasibility of using Ospats
needs to be made particularly if it is thought the national mapping is
going to be unreliable.

2. Perform downscaling together with incorporation of observed data.
This is akin to data assimilation, but more specifically as bias cor-
rection (Poggio and Gimona, 2015). The work performed by Malone
et al. (2017) demonstrates how to implement this in particular for
soil carbon mapping.

3. Use a model averaging approach to fuse together downscaled out-
puts with digital soil mapping outputs. Model averaging is a useful
approach if one has multiple outcomes from different models and

Table 3
Estimated soil carbon stocks and upper and lower confidence bounds for each Australian site for 0–0.3m and specified depth intervals. A proportion of the total carbon stock is provided
for each depth interval.

Site Depth (m) Soil carbon stocks (t/ha) Upper stocks (t/ha) Lower stocks (t/ha) Percentage of total carbon stocks Stratification effect

AusCarb_S1 0–0.30 22.42 27.64 17.20 100 0.7
0–0.05 30.43 39.57 21.28 23
0.05–0.15 24.88 31.06 18.70 37
0.15–0.30 18.10 22.80 13.41 40

AusCarb_S2 0–0.30 9.93 14.56 5.30 100 0.9
0–0.05 9.24 13.43 5.05 16
0.05–0.15 11.66 17.69 5.63 39
0.15–0.30 9.01 13.25 4.77 45

AusCarb_S3 0–0.30 25.93 35.28 16.58 100 0.6
0–0.05 18.81 23.60 14.01 12
0.05–0.15 25.14 32.74 17.55 32
0.15–0.30 24.64 42.61 15.05 56

AusCarb_S4 0–0.30 12.77 14.64 10.90 100 0.6
0–0.05 8.57 11.03 6.10 11
0.05–0.15 13.82 17.94 9.70 36
0.15–0.30 13.48 16.88 10.08 53

Table 4
Estimated soil carbon stocks and upper and lower confidence bounds for each New Zealand site for 0–0.3 m and specified depth intervals. A proportion of the total carbon stock is
provided for each depth interval.

Site Depth (m) Soil carbon stocks (t/ha) Upper stocks (t/ha) Lower stocks (t/ha) Percentage of total carbon stocks Stratification effect

NZCarb_S1 0.0–0.3 65.30 68.26 62.33 100 1.2
0.0–0.1 29.75 31.45 28.04 46
0.1–0.2 22.72 24.06 21.37 35
0.2–0.3 12.83 13.87 11.79 20

NZCarb_S2 0–0.3 101.88 111.57 92.29 100 1.1
0–0.05 24.51 26.11 22.87 24
0.05–0.1 22.31 24.66 19.96 22
0.1–0.2 33.76 37.37 29.77 33
0.2–0.3 22.75 24.76 18.32 22
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wants some way of consolidating them into one output (Diks and
Vrugt, 2010). Most approaches preferentially weight the outcomes
based on accuracy such that the final outcome is one that is at least
as good as or better than the best individual model.

To assess what the best option is, one could follow each of the 3
steps and select the one which achieves the lowest prediction variance.
Ultimately the third step will probably be the best option as the map-
ping will be a collective of the models derived from both national and
local sources.

Acquisition of high resolution ancillary data is a necessary re-
quirement for driving the downscaling towards the fine resolution
mapping of soil carbon. The availability of these resources will be
variable. Many landholdings where management is based on precision
technologies, will likely have some or a combination of high resolution
data such as yield mapping, very high resolution elevation data, as well
as radiometric and EMI data. At the other end of the spectrum such
information will not be immediately available. This was the case for the
investigated sites in the Australia where we needed to collect the in-
formation ourselves. While high resolution elevation data is available
for this area in general (25m resolution), other key variables such as
gamma radiometric data is poorly resolved. This situation will in-
evitably change in the future as outputs from new sensing technologies
coupled with finer resolutions will become available for public use.
Using some examples is the availability of sub-metre LIDAR data that is
available for much of the coverage of New Zealand (https://data.govt.
nz/dataset/show/4709). A publically available 10m resolution DEM is
available for the conterminous USA (http://nationalmap.gov/elevation.
html). Similar developments in large extent earth resource data ac-
quisition will or are inevitably happening in Australia to date.

In terms of SCS, there will always be a need to investigate new
technologies that will make SCS measurement more efficient and
cheaper. Direct measurement of soil carbon in the field via inelastic
neutron scattering (Yakubova et al., 2016) shows particular promise in
terms of efficiency. Infrared technology is a natural candidate for that
purpose too (Bellon-Maurel and McBratney, 2011). A further ad-
vancement to this is to bring the technology into the field and perform
the measurement in real time in the field or in situ (Roudier et al.,
2015). Such technology will enhance the ability to collect more data.
Yet this needs to be balanced by taking into account the expected
higher measurement error associated with using infrared measure-
ments. Synergising Ospats with infrared carbon measurement is likely to
be an avenue of further research.

Further in regards to measurement is that of bulk density, the ne-
cessary input for SCS. It is a soil property that is difficult to measure,
because it is quite labour intensive. Measurement of bulk density at soil
depth also presents logistical problems when there is no desire to ex-
cavate soil pits to gain physical access to the soil beyond 0.3m. In fact,
soil coring as was used in this research is likely to be the mainstay for
soil carbon auditing research because it allows an efficient means to
retrieve soil sample at depth. Nevertheless, how to obtain bulk density
measurements from the core samples has and is likely to attract sub-
stantial research interest. The approach used in Australia was one ap-
proach, but could still be seen as labour intensive because substantial
field and laboratory effort is required to extract duplicate soil cores,
estimate soil wetness, and weigh out samples etc. Recently, Lobsey and
Viscarra Rossel (2016) have developed a sensing method based on
gamma-ray attenuation and vis-NIR spectroscopy. It was shown by
comparison that this approach is far more efficient than traditional
approaches to estimating bulk density, and can be used in the field too.
A step further is a method proposed by Pallasser et al. (2015) where
measurement of SCS of a whole soil core can be measured in entirety
and in one step i.e. no need to estimate bulk density separately. The
method of analysis is based on combustion, where a large aliquot of soil
is combusted, and a detector evaluates how much CO2 is evolved as a
result. The approach is advantageous because large sample volumes

(500–600 g) can be used, as opposed to very small aliquots (e.g.
500mg) that are more traditionally used with the instrumentation
currently available. Measurement of carbon from volume of this size
reduces bias and error associated with using very small aliquots. Cur-
rently the custom made measurement instrument – soil carbon bench –
is situated in a lab. It will have far greater utility if it were taken into the
field.

11. Conclusions

Research undertaken in Australia and New Zealand has tested and
helped to develop a possible soil carbon auditing method appropriate
for wide farm-scale application. We expect on-farm soil carbon auditing
to play a significant role in the future of agriculture to meet:

(i) international monitoring commitments of greenhouse gas emis-
sions, and

(ii) regulations placed on landowners to sustain the soil resource.

The method takes advantage of existing national and local en-
vironmental datasets that help to define the likely variability of soil
carbon on a farm, so that the area can be stratified for on-going mon-
itoring. The method we have proposed would also be applicable irre-
spective of the spatial extent of the mapping to be downscaled. In this
study we have investigated national mapping extents. But if the spatial
resolution of the source map (where the spatial extent could be state-
level, regional, or even smaller) is seemingly too coarse i.e. pixels are
too large, for on-farm application, then our proposed downscaling, then
sampling method would be equally applicable.

However, while the proposed approach provides a statistically ro-
bust and transparent method for estimating on-farm soil carbon stocks,
an appraisal of the reliability of the national mapping to be used for
spatial downscaling needs to be performed initially. Unreliable map-
ping without any site-specific information to correct it will ultimately
lead to relatively imprecise soil carbon stock estimates when estab-
lishing a baseline. After a reliable baseline has been established, our
approach will be beneficial in subsequent sampling auditing campaigns.
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