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A B S T R A C T

Considering the nature of soils distribution, an important modeling issue in soil class mapping is imbalanced
class observations. Imbalanced number of data in observed soil classes in an area can result in the under-
estimation or loss of minority classes and an overestimation of the majority classes in predictive modeling. The
effect of this phenomenon is that an area of land with comparatively fewer soil profile observations could be
unmapped in the digital maps. To address this problem, this paper investigated the usefulness of data pre-
treatment techniques called over- and under-sampling of data applied on three predictive models including
decision trees (DT), random forest (RF), and multinomial logistic regression (MNLR). The study area is situated
in the northwest of Iran with 452 profiles observations on a regular grid covering about 12,000 ha. This area has
8 USDA soil great groups with an imbalanced frequency distribution. Results showed that modeling using im-
balanced distribution of class observation caused uncertain maps with minority classes being lost and relatively
poor accuracies. After data treatment, with over- and under-sampling, all models showed significant improve-
ment in maintaining the minority classes, in both calibration and validation evaluations. Balancing the classes
led to a notable decrease in uncertainty of all 3 models by decreasing the confusion index and raising the
probability of occurrence for the soil classes in the final maps. Comparing the 3 models, decision trees showed
the largest calibration and validation accuracies with and without data treatment. RF has an issue of over-
estimation of some of the majority classes. Data resampling technique can be a useful solution for dealing with
imbalanced class observations to produce more certain digital soil maps.

1. Introduction

Soil type maps are an essential tool for targeted land use planning
and soil management. For example, maps of soil types can help in as-
signing suitable land management practices and plans that are based on
soil type-specific conditions and capabilities. Digital soil mapping
(DSM) (McBratney et al., 2003) has been an excellent tool for con-
temporary soil mapping efforts as it leverages and exploits the avail-
ability of geospatial datasets and model-based approaches. Statistical
and geostatistical models are routinely applied throughout the world
for mapping of soil classes in different spatial scales and extents
(Brungard et al., 2015; Heung et al., 2016; Ma et al., 2019).

Various modeling techniques such as multinomial logistic regres-
sion, random forest, and decision trees models have been applied in
predicting and mapping soil classes (Adhikari et al., 2014; Grunwald,
2009). A study by Brungard et al. (2015) found that complex machine

learning models were generally more accurate than simple models;
however, the accuracy of the model depends upon the number of
classes and the frequency distribution of soil observations. The number
of soil classes and frequency distribution of the classes in an area are
largely a function of the environmental complexity and the nature of
the soil taxonomic classification system in that area. Hence, an im-
portant issue that affects the accuracy of a digital soil model is the
imbalanced number of observations among classes. This phenomenon
affects the predictive models, in such a way that usually some of the
minor soil classes get omitted in the resulting maps (Ma et al., 2019).
When the minor class is important (e.g., a rare or endemic soil class)
(Baker et al., 2016), such models do not preserve pedo-diversity
(Costantini and L'Abate, 2016) and lead to an unreliable soil map.
Furthermore, imbalanced class observations are difficult to deal with
when setting aside portions of data for training and testing the applied
models. For example, it is hard to make sure that all classes are included
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in both calibration and validation datasets without omission of the
minority class or classes. While imbalanced classification is a re-
cognized problem in the machine learning discipline for categorical
data modeling (Haixiang et al., 2017; Nayal et al., 2017) this issue has
not been well addressed in soil mapping.

In DSM, a lot of effort has been made to compare different machine
learning models to seek out the most accurate or optimal model con-
figuration (Brungard et al., 2015; Heung et al., 2016; Taghizadeh-
Mehrjardi et al., 2015). Here, we compare three important and well-
known models including random forest, multinomial logistic regres-
sion, and decision trees by investigating them for soil class mapping in
the case of imbalanced datasets to see how they produce a soil type
map. These models are widely used for digital soil mapping despite that
they are known to be inefficient in handling imbalanced class data
input in other fields of science. It would be helpful for DSM studies to
compare to what extent the problem exists with these models and how
they would respond to a treatment.

To deal with the imbalanced classification issue, several suggestions
have been proposed for improving the model training performance and
result of classification such as data-level solutions, algorithm-level so-
lutions and ensemble solutions (Zhu et al., 2017). Data-level solutions
are resampling techniques such as random over- and under-sampling
for manipulating the observed data to become as close to a balanced
distribution as possible (Chawla et al., 2002; Abdi and Hashemi, 2016).
In an algorithm-level solution, modifications on models functions are
applied to raise the ability of models to maintain the minority class,
especially through cost-sensitive learning (e.g., Siers and Islam, 2018).
In an ensemble solution, classification is often improved by combining
several classifiers to obtain a new and better classifier (Galar et al.,
2012). The data-level solution seems the easiest for the purpose of this
study, and as these types of techniques are simpler to apply compared
to others mentioned above, we chose them for the present study.
However, each of the proposed solutions has advantages and dis-
advantages and discipline-specific challenges, on which some issues
have been discussed in López et al. (2013).

To address the issue of imbalanced data in soil class mapping, this
paper investigated naturally imbalanced soil type classes for use in 3
models mentioned above for prediction of USDA soil great groups. The
data were treated with both over and under-sampling techniques to
improve classification results.

2. Methods and materials

2.1. Study area

The study area is located in the northwest of Iran, in a semi-arid
region according to de Martonne climate classification (de Martonne,
1926). The average annual rainfall is 271mm and the mean annual
temperature is 15 °C. Mean altitude is 255m above sea level, and main
physiographic units include plateau and hills with piedmont plains to a
lesser extent. The main soil orders according to the USDA soil taxonomy
(USDA, 2010) are Aridisols and Entisols. Land cover types of the area
include rangelands and agriculture, which are of high importance be-
cause of typical production and income for the rural population. Soil
samples were collected from 452 profiles to the depth of 1.5 m on a
regular grid, covering an area of approximately 12,000 ha. The grid
spacing was 500m, but in some situations, the site had to be relocated
to a nearby site, because of access issues in the intended location. Fig. 1
shows the study area location and sampling points. Morphological de-
scription and physicochemical analysis of a range of properties were
conducted to classify the soils according to the USDA soil taxonomy key
for classification (USDA, 2010). Soils were allocated to 8 great groups:
(A) Calcigypsids, (B) Argigypsids, (C) Natrigypsids, (D) Haplogypsids,
(E) Haplocalcids, (F) Haplocambids, (G) Torrifluvents, and (H) Tor-
riorthents (Table 1). The two last soil classes were considered as min-
ority classes, as they have a much lower number of observations (7%

and 2% of the total observed data) compared to the other classes.
Calcigypsids followed by Haplocambids and Haplogypsids were con-
sidered the majority classes with 35%, 18.5% and 17% of the whole
study area observations. These classes had higher frequencies compared
to other soil classes (Table 1; Fig. 2).

2.2. Digital soil mapping

The procedure of DSM (McBratney et al., 2003) relies on relating
soils to proxies of soil forming factors (available environmental data),
which captures inherent soil spatial variation. By adopting a similar
approach, in this study soil types were estimated spatially across a
given mapping extent via an empirical model-based approach. The
environmental covariates used in this study include a digital elevation
model (DEM), which was obtained from the freely available ASTER
satellite image (ASTER GDEM, METI, and NASA; http://earthexplorer.
usgs.gov), and several environmental variables that were derived from
this DEM. Based on scientific and local expert knowledge of the study
area, among a number of covariates, six covariate maps were selected
for DSM. For instance, vegetation cover created from Landsat satellite
image was not effective in explaining the soil variations, as it showed a
very low variation, thus it was not used in the study. The 6 covariates
include digital elevation model, terrain ruggedness index, relative slope
position, channel network base level, landforms, surface texture, and
valley depth. All these covariates have a 32m resolution. Fig. 3 shows
the maps of the covariates used in this study.

Three models including decision trees, multinomial logistic regres-
sion and random forest were used for producing a digital map of soil
great groups. For the decision trees model, we used the C5.0 function in
the C50 package in R (Kuhn et al., 2018). This function is based on
Quinlan's C5.0 algorithm (Quinlan, 1993). For the MNLR model, mul-
tinom function in the nnet package in R (Ripley and Venables, 2015) was
used. Likewise, for RF, we used randomForest function in the random-
Forest package (Breiman, 2006). Using all of these models, we fit soil
class observations with the raster stack of the six considered environ-
mental covariates. The soil classes (our target variable) are then pre-
dicted as a function of the environmental covariates.

The models of DT and RF were executed with 100 bootstrap itera-
tions to resample the training dataset for 100 times. For the MNLR
model, training was performed with 100 iterations, and each of the 8
classes probabilities were computed through the predict function for the
map sites. The resulting multiple maps were used to calculate the most
probable class map and the average probabilities for each of the classes
according to the procedure of Odgers et al. (2014) as a way of quan-
tifying model uncertainties.

2.3. Data treatment using oversampling and under-sampling methods

Before applying any treatment on the data, 30% of the dataset was
randomly selected for a validation set and 70% for calibration of the
models (This ratio was variable for different classes due to imbalanced
number of observations) (Table 1). This was done by manually separ-
ating each of the classes and then setting aside a portion of each class
observations randomly using a computerized function, so that we make
sure that every class exists in both validation and calibration datasets.

First, the models were executed on the untreated data, to see how
class imbalance affects the models' performance and resultant map
accuracy and uncertainty. Afterward, two data treatment functions
namely random oversampling on the minority soil classes and random
under-sampling on the majority soil classes were executed. These were
performed using the ubOver() and ubUnder() functions, respectively,
from the “unbalanced” package (Dal Pozzolo et al., 2015) in the R
software (R Development Core Team, 2011). Under-sampling was
performed for the majority classes of A, D and F and oversampling for
the minority classes of G and H (Table 1 and Fig. 2). The majority
classes were under-sampled to half and the minority class G and H were
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oversampled by 5 folds and 15 folds, respectively, to make the dis-
tribution as close to a normal one as possible without significantly
scrambling the original proportion of different classes.

The under-sampling procedure randomly decreases the number of
observations in the majority classes. While in the oversampling treat-
ment, observations in minority soil classes are repeated, which means
that the added observations already exist in the area and no irrelevant
data is added. The objective is to approximately balanced the dis-
tribution of the soil classes data (Abdi and Hashemi, 2016; Dal Pozzolo
et al., 2015). The frequency bar chart of the soil classes before and after
data resampling treatments is shown in Fig. 2.

2.4. Models evaluation

2.4.1. Accuracy assessment and validation
To assess the accuracy of the models, we used four measures
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Fig. 1. Study area location and sampling points.

Table 1
Soil great groups and number of observations.

Soil
class
code

Taxonomic class
(great group
level)

No of
observations (and
percentage of
observation)

Calibration
(number and
percentage)

Validation
(number and
percentage)

Aa Calcigypsids 160 (35.39%) 112 (70%) 48 (30%)
B Argigypsids 37 (8.18%) 26 (70%) 11 (30%)
C Natrigypsids 23 (5.08%) 17 (70%) 7 (30%)
D Haplogypsids 79 (17.47%) 56 (70%) 23 (30%)
E Haplocalcids 60 (13.27%) 40 (67%) 20 (33%)
F Haplocambids 84 (18.58) 59 (70%) 25 (30%)
G Torrifluvents 7 (1.5%) 4 (60%) 3 (40%)
H Torriorthents 2 (0.44%) 1 (50%) 1 (50%)

a Codes used throughout the paper to represent the soil classes for ease.
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including overall accuracy, user's accuracy, producer's accuracy and
Kappa coefficient of agreement (Congalton, 1991). Overall accuracy is
obtained by dividing the total correctly predicted number of classes by
the total number of observations. Producer's accuracy is the correctness
of predictions for a certain class, obtained by dividing the total number
of correct predictions of a class to the total number of observations of
that class. User's accuracy is also used for an individual class accuracy
assessment, which is calculated as the total number of correct predic-
tions of a class divided by the total number of predictions that were
predicted in that class. Finally, the Kappa coefficient is a measure that
shows the difference between observed agreement and expected
agreement by chance, obtained by the following:
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−
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e
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Here, colSumi and rowSumi are the summations of the columns and
rows of classes in the confusion matrix. TO is the total number of ob-
servations and n is the number of classes. These measures were com-
puted by applying the goofcat function within ithir package in the R
software (Malone et al., 2017).

2.4.2. Uncertainty assessment
To evaluate the uncertainty of the predictive maps obtained by the

models mentioned above, we calculated the confusion index, which is
the difference between the most and second most probable class
(Burrough et al., 1997). This index is calculated as follows:

= − − −CI p p1 ( )max max 1

where pmax is the probability of the most probable soil class and pmax−1

is the probability of the second most probable class (Burrough et al.,
1997; Odgers et al., 2014). The lower the difference between the most
probable and second-most-probable soil class, the more the predictive
models are uncertain. Also, the spatial average of the probabilities of
each class in the most probable outcome of the models is compared
before and after the resampling treatments among the three different
models. The probability of occurrence of a class and the confusion index
indicate what is the correct class to be determined in a given location
and how confused we are about that prediction.

3. Results

3.1. Results of predictive mapping using imbalanced soil classes

3.1.1. Accuracy assessment
The kappa coefficient of agreement test showed that DT is more

accurate compared to RF and MNLR in both the calibration (K= 0.95)
and validation (K=0.14) datasets. The kappa coefficient for the RF
model was poor: −0.04 and −0.01 for the calibration and validation
datasets, respectively (Table 2). This means that agreement between
observations and predictions was less than expected by chance for this
model, indicating a systematic disagreement.

The user's and producer's accuracy tests on the calibration dataset
(Table 3) showed a much better performance for DT model compared to
MNLR and RF models. However, the Torriorthents minority class (class
H) and Natrigypsids (class C) were omitted in the DT and MNLR, re-
spectively, but, the minority classes were predicted by RF, albeit with
zero correct number of predictions. Also, using the validation dataset,
producer's and user's accuracies showed more number of classes with
relatively higher accuracy results for DT, compared to other models
(Table 4). Using the validation dataset, two classes in DT and four
classes in MNLR were omitted when imbalanced classes were used, as
indicated by user's accuracy test. These results confirmed that an im-
balanced number of class observations affects machine learning results
negatively. RF model seems to have over-fitted the majority class A and
hence, have probably overestimated this class, as can be seen from the
most probable map that shows a very high ratio of this class when the
imbalanced classes were used (Fig. 4).

3.1.2. Uncertainty assessment
The average probability of occurrence for each of the 8 soil classes

was calculated within the most probable map of the whole study area
(Table 5). Results showed that using the imbalanced data, the RF model
had a very low (0.01 to 0.001) average probability of occurrence for the
eight soil great groups in the most probable map. The DT model showed
classes with higher probability of occurrence compared to the other two
models. Yet, Torriorthents (class H) and Natrigypsids (class C) had no
probability of occurrence in DT and MNLR models, respectively.

The average confusion index of the whole study area pixels was
calculated for comparison of the models. The confusion index showed a
lower value for the DT model compared to the other two models. The
average confusion was 0.73 for DT and 0.99 for both MNLR and RF
models (Table 6). This index shows that the DT model produces more
certain results. Also, the percentage of area with high confusion was the
smallest for DT (Table 6). The confusion index did not show a sig-
nificant variation within the study area; hence, the mean statistic was
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Fig. 2. Frequency of the different soil type classes before (left) and after (right) data resampling.
(The letters A–H are described in Table 1).
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sufficient to represent the confusion index map situation.

3.2. Results of predictive mapping using balanced soil classes

3.2.1. Accuracy assessment
After applying random oversampling and under-sampling on the

data, the above-mentioned tests were performed again. Results showed
a remarkable improvement for the RF model with regards to the kappa
coefficient for calibration and validation datasets compared to when the
imbalanced class observations were used (Table 2). Also, the calibration
performance for the MNLR model improved to some extent. However,
the DT model did not show any improvement in terms of Kappa and
overall accuracy; nevertheless, it remains the best performing model
compared to RF and MNLR models in terms of Kappa coefficient. The
most probable maps achieved by DT, RF and MNLR models using

Fig. 3. Maps of the covariates used in the study.

Table 2
General accuracy results of the predictive models for balanced and imbalanced
datasets.

Imbalanced dataset Balanced dataset
(treated data)

Model Dataset Overall
accuracy

Kappa
coefficient

Overall
accuracy

Kappa
coefficient

Decision tree Calibration 96 0.95 82 0.78
Validation 37 0.14 29 0.14

Random forest Calibration 27 −0.04 55 0.48
Validation 28 −0.01 14 0.06

MNLR Calibration 46 0.23 47 0.34
Validation 39 0.12 33 0.11
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resampled data are shown in Fig. 4.
Producer's and user's accuracy tests results, which show models

performance for each class individually, showed a notable improve-
ment of calibration for 7 out of the 8 soil classes for the RF model,
compared to when imbalanced classes were used (Table 3). In the DT
results, class H (Torriorthents), which was omitted when trained using
the imbalanced dataset, was well predicted with a user's accuracy of
100% using the treated data. Also, this minor class showed a producer's
accuracy of 100%, compared to zero accuracy when trained using im-
balanced data. MNLR model improved over calibration for 5 out of the
8 classes (producer's test) and also got succeeded in keeping the Na-
trigypsids (class C), in spite of incorrect predictions for this class (user's
test).

User's accuracy test using the validation dataset revealed that DT
and MNLR models succeeded to maintain one and four omitted classes,
respectively, compared to when imbalanced classes were used
(Table 4). For the RF model, producer's accuracy showed an improve-
ment in prediction for 5 out of 8 soil classes in validation test. Half of
the classes were also improved for this model in the user's accuracy test.
However, three of the classes were not maintained in prediction using
the validation dataset.

3.2.2. Uncertainty assessment
Computing the spatial average for probability of occurrence of each

class in the most probable map using the balanced data input for the

models showed a notable improvement for all soil classes in DT and RF
and some classes for MNLR (Table 5). For MNLR model results, 5 of the
classes showed improvement in their probability of occurrence. One of
those classes had obtained no probability of occurrence when the im-
balanced classes were used. In general, the DT model showed the
highest probability of occurrence for all the classes in comparison with
the other two models with a probability of 0.99 (rounded up value) for
every one of the classes.

The average confusion index of the whole study area map for the 3
models showed a high improvement for the DT and RF models results
compared to when imbalanced data were used. The average confusion
index decreased from 0.73 to 0.02 for DT, and from 0.99 to 0.10 for RF
model (Table 6). That means there is comparatively lower confusion
and less uncertainty over the map produced by DT model after data
resampling, which shows higher consistency of modeling. This index
did not show noticeable improvement for MNLR model. Also, the area
percentage with high confusion in the confusion index map decreased
noticeably for DT and RF models.

4. Discussion

Researchers have reported improvements in classification problems
using resampling techniques in other fields of research. For example,
significant improvement was reported for different class types after
oversampling in a research on various classification types (Sáez et al.,

Table 3
Producer's and user's accuracy results for the 3 models using the calibration dataset.

Soil classesa

Model Accuracy test A B C D E F G H

DT Producer's acc.b with imbalanced data 100 97 100 95 89 94 100 0
Producer's with balanced data 84 77 95 78 54 93 100 100
User's acc. with imbalanced data 93 100 100 100 100 94 100 NaNc

User's acc. with balanced data 77 75 82 86 93 77 89 100
RF Producer's acc. with imbalanced data 70 4 0 2 5 2 0 0

Producer's with balanced data 2 66 100 73 49 45 100 100
User's acc. with imbalanced data 33 34 0 20 16 6 0 0
User's acc. with balanced data 100 28 46 65 36 100 100 100

MNLR Producer's acc. with imbalanced data 84 15 0 4 3 70 40 100
Producer's with balanced data 42 43 0 33 14 77 80 100
User's acc. with imbalanced data 46 50 NaN 29 20 48 50 100
User's acc. with balanced data 39 36 0 31 32 52 80 100

a Soil classes codes are defined in Table 1.
b Accuracy.
c NaN: not a number; means that no prediction was made for this class.

Table 4
Producer's and user's accuracy results for the 3 models using the validation dataset.

Soil classesa

Model Accuracy test A B C D E F G H

DT Producer's acc.b with imbalanced data 58 30 0 10 7 62 0 0
Producer's with balanced data 31 60 50 25 0 55 0 0
User's acc. with imbalanced data 39 75 0 11 25 50 NaNc NaN
User's acc. with balanced data 54 60 40 7 0 24 0 NaN

RF Producer's acc. with imbalanced data 73 10 0 0 14 0 0 0
Producer's with balanced data 0 30 85 25 29 5 0 0
User's acc. with imbalanced data 34 17 0 0 40 0 0 0
User's acc. with balanced data NaN 25 13 8 20 20 NaN NaN

MNLR Producer's acc. with imbalanced data 73 10 0 0 0 67 0 0
Producer's with balanced data 33 10 0 30 0 72 0 0
User's acc. with imbalanced data 38 50 NaN 0 NaN 44 NaN NaN
User's acc. with balanced data 63 5 0 15 0 32 0 0

a Soil classes codes are defined in Table 1.
b Accuracy.
c NaN: not a number; means that no prediction was made for this class.
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Fig. 4. Comparison of the most probable maps produced by the three models with and without balancing the classes.

Table 5
Average probability of occurrence for each class, obtained by the 3 predictive models.

Soil classesa

Model Average probability A B C D E F G H

DT Probability with balanced dataset 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Probability with imbalanced dataset 0.53 0.41 0.35 0.44 0.40 0.55 0.53 NaNb

RF Probability with balanced dataset 0.51 0.93 0.95 0.94 0.96 0.96 0.97 0.98
Probability with imbalanced dataset 0.001 0.01 0.01 0.01 0.01 0.01 0.01 0.01

MNLR Probability with balanced dataset 0.39 0.33 0.38 0.34 0.29 0.72 0.72 0.82
Probability with imbalanced dataset 0.46 0.34 NaN 0.33 0.27 0.48 0.65 0.91

a Soil classes codes are defined in Table 1.
b NaN: not a number; means that no prediction was made for this class.
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2016). In an extensive study on the use of resampling techniques on
several imbalanced datasets, Loyola-González et al. (2016) reported
accuracy improvement after the use of oversampling and under-sam-
pling for contrast pattern based classifiers. In the field of medicine,
protein classification has improved with the help of oversampling
technique (Ahmad et al., 2017). In soil science, oversampling was re-
ported to improve classification results using Markov chain random
fields models for mapping soil type classes (Sharififar et al., 2019).
However, there is still need for more research on the effect of different
balancing techniques on different classifiers, particularly in the field of
digital soil mapping.

Comparing the most probable maps produced by the three models
(Fig. 4) shows that class H (Torriorthents, coded in blue) are absolutely
lost from the map created by DT model using imbalanced data. This
area, although small on the map, covers around 40 ha, which requires
fairly different management for crop growth or rangeland utilization.
Likewise, class C (Natrigypsids) was omitted in the MNLR map when
the imbalanced classes were used (coded green in the map). This area
also covers approximately 10 ha of the study area lands, as it contains
high amount of sodium, it requires careful land management strategies
different from those suitable for other parts of the area. The map pro-
duced by the RF model using imbalanced data shows that the majority
of the area is predicted as class A (Calcigypsids) (yellow color in the
map) which is dominated by Calcium and behaves completely different
from other soil classes. Comparing this map with other maps in Fig. 4
show that RF has overestimated the majority class (A). All these find-
ings reveal that maps produced using imbalanced classes could be
misleading for the users or decision makers of the final produced maps.

Overall, data treatment with over- and under-sampling helped
overcome the issue of modeling imbalanced class observations by im-
proving the predictive models' results, in the sense of maintaining the
minority class or classes in the calibration and validation tests to a
reasonable extent. Although mostly producer's and user's accuracy of
the minority classes were found to be zero in the validation test, but yet,
the minority classes have been maintained in the modeling process and
are not missed out, compared to when using imbalanced datasets with
no prediction at all for them. Here in the validation, it should be clar-
ified that zero means no correct prediction in the validation dataset,
which could be due to the small size of our dataset for validation,
particularly, in the minor soil classes that have very few number of
observations. Nevertheless, this is still an achievement, as the minority
classes were often completely lost in the mapping process, even at the
calibration stage (e.g. DT model; Table 3), when data pretreatment was
not applied. When the data were not treated for balancing, the outcome
of the producer's and user's accuracy tests in some cases for the minority
classes were found to be not a number (NaN), which is mathematically
interpreted in such a way that these classes did not exist in the models
output, as the ratio denominator in the user's accuracy test (refer to the
Methods section) was zero for these classes. Beside the accuracy as-
sessment results, uncertainty assessment also revealed a better perfor-
mance of the models after the treatment.

Under-sampling decreases the number of observations in the ma-
jority classes (such as class A in our case) to balance the classes dis-
tribution, hence, it can be useful to prevent overfitting and over-
estimation of such a class. A major issue with the RF model is

overestimation of the dominant soil class A when the imbalanced data
were used (Fig. 4). In comparison, oversampling of the minority classes
has helped in maintenance of these classes without bringing any arti-
ficial data into the dataset and mapping process, rather only duplicating
some of the observations with the same coordinates. Altogether, these
techniques resulted in noticeable improvement in models' performance
by decreasing the uncertainties and prevention of losing the minority
classes in the produced maps. However, RF model did not improve in
terms of minority classes maintenance using the validation dataset.

A problem in dealing with the imbalanced soil classes with minority
classes that have very few numbers of observations is that one might
face a very small size of data for validation. As can be seen from the
results of this research, individual classes accuracies in the validation
dataset was zero for the minority classes, but this does not mean that
the performance is not improved; rather it is the small size of the va-
lidation dataset that might not be capable to show real number of
correct predictions for these classes.

5. Conclusions

This study brought some insight into soil type mapping with im-
balanced and balanced number of observations using 3 well-utilised
models within the approach of digital soil mapping with the help of
data pre-treatment. Imbalanced distribution of class observation re-
sulted in uncertain maps with minority classes being lost and relatively
poor accuracies.

After data treatment, with over- and under-sampling, decision trees
and multinomial logistic regression models showed significant im-
provement in maintaining the minority classes, in both calibration and
validation evaluations. While data treatment can cause a slight decrease
in the overall accuracy on the validation dataset, it decreased the un-
certainty of all models. Zero correct prediction of the minority classes
after data treatment in the validation set is mainly due to the small size
of our validation dataset.

Comparing the 3 models, decision trees showed the highest cali-
bration (Kappa and overall tests) and validation (Kappa) results with
and without data treatment. RF has an issue of overestimation of some
of the majority classes. According to the results, decision trees model
was found to perform best in response to data resampling, compared to
MNLR and RF models.
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