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A B S T R A C T

Particle-size distribution (PSD) plays an important role in influencing a number of soil physical, chemical, and
biological properties. Currently, digital soil mapping (DSM) methods based on empirical observations have been
widely used in mapping PSD. However, DSM methods rarely consider soil genetic processes. This paper in-
vestigated the use of a mechanistic soil evolution model, State Space Soil Production and Assessment Model
(SSSPAM), to simulate the spatiotemporal evolution of PSD in the Hunter Valley, NSW, Australia. SSSPAM
simulates the spatial and temporal variation of PSD within a landscape based on erosion due to overland flow,
deposition, and physical weathering within the soil profile. We conducted a simulation over the 144 km2 area
using a 30m digital elevation model (DEM) as an input. The model simulated soil evolution over 70,000 years to
ensure that the PSD had reached steady-state. To validate and analyze the influence of different process para-
meters on particle size dynamics, we carried out a parametric study in a field within the study area and found a
strong relationship between runoff excess generation, exponential weathering rate, and soil particle-size dis-
tribution. As expected, higher discharge rates produced coarser particles and larger weathering rates produced
finer PSD. We further explored the feasibility of combining the mechanistic SSSPAM and empirical DSM ap-
proaches by comparing simulation results with observed sand content. We found limitations of the SSSPAM
model to predict sand fraction accurately in the study area due to incomplete process coverage. The output of
SSSPAM can be improved by integrating it with DSM techniques. Overall, SSSPAM can explore how particle size
will change through time and identify areas with risks of erosion and deposition. Such a model can be used to
inform large-scale management to ensure our soil is secured in the future.

1. Introduction

Particle-size distribution (PSD) is a fundamental and important soil
attribute because it plays a key role in influencing a number of soil
physical, chemical, and biological properties such as bulk density, hy-
draulic conductivity, water holding capacity, erodibility, carbon sto-
rage and many others (Van Looy et al., 2017; Minasny and McBratney,
2018). Soil texture, expressed by the relative proportions of sand, silt,
and clay, is the most common descriptor of PSD and varies in space and
time as soil evolves in response to weathering processes and sediment
transport (Cohen et al., 2010). Understanding the spatial distribution
and dynamic variability of soil texture is imperative in the quest for
improved agricultural development that secures our soil (Zhao et al.,
2009; Adhikari et al., 2013; Akpa et al., 2014).

In the past decade, the soil science community has formulated
various statistical models in the digital soil mapping (DSM) framework
to predict the spatial distribution of soil properties (e.g., Grimm et al.,
2008; Viscara Rossel and Behrens, 2010). This statistical approach is
based on empirical soil observations which are correlated to environ-
mental covariates via various techniques, such as Regression Kriging,
Generalised Linear Models (GLM) (Poggio et al., 2013), Generalised
Addictive Models (GAM) (Scull et al., 2003), Cubist (Henderson et al.,
2005; Ma et al., 2017), Random Forests (Hengl et al., 2015), artificial
neural networks (Malone et al., 2009), Genetic Algorithm (Nelson and
Odeh, 2009), support vector machine (Ahmad et al., 2010; Ballabio,
2009), Bayesian inference model and expert knowledge (Zhu et al.,
1996, 2001). These methods fulfill the increasing need for quantitative
soil information but are of limited use in complex terrain where
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observations are difficult to obtain. Moreover, DSM models assume that
soil properties are in equilibrium with the landscape where they de-
veloped and rarely consider soil genetic processes. Simulating soil
properties across the landscape ideally should be achieved by me-
chanistic models rather than using empirical models.

Researchers have found strong links between the soils and the
landform on which they reside (Welivitiya et al., 2016). The dynamics
of changes in soil attributes can have a significant impact on the long-
term processes (landform evolution) and the spatial variability and
magnitude of soil properties (Minasny et al., 2015). Conversely, land-
scape evolution influences soil development, i.e., erosion or deposition
changes soil thickness (Bonfatti et al., 2018). Understanding the spa-
tiotemporal variability of soil properties in a dynamic landform can best
be achieved by a process-based soil-landscape evolution model. For
example, MILESD (Model for Integrated Landscape Evolution and Soil
Development) (Vanwalleghem et al., 2013) and LORICA (Temme and
Vanwalleghem, 2016) incorporate various chemical and biological
processes in the simulation. MILESD is built on the rudimentary fra-
mework of landscape-scale models for soil redistribution (Minasny and
McBratney, 1999, 2001) and a pedon-scale soil formation model
(Salvador-Blanes et al., 2007). LORICA modifies the three-layer module

to represent the soil profile in MILEDS to incorporate additional layers
and combines with the landform evolution model LAPSUS (Schoorl
et al., 2014). SSSPAM (State Space Soil Production and Assessment
Model) extends these approaches to test more general conditions
(Welivitiya, 2016).

This paper aims to explore the use of mechanistic pedogenesis
model SSSPAM for modelling the spatiotemporal evolution of PSD
across an area in the Hunter Valley, New South Wales, Australia. With
the intention to improve the use of pedological knowledge in DSM
techniques, we also tested the value of process-based model outputs as
covariates in DSM to predict the spatial pattern of sand content.

2. Materials and methods

Willgoose and Sharmeen (2006) developed a physically-based
model named ARMOUR to simulate spatial and temporal changes of
armouring and weathering processes on a one-dimensional hillslope.
However, this approach is infeasible for large-scale 2D or 3D soil evo-
lution simulations due to the extensive computer resources and very
long runtimes. By simplifying ARMOUR, Cohen et al. (2009) re-
formulated it as a state-space matrix model named mARM which is

Fig. 1. Location of the study area in the Hunter Valley, Scarborough, and their DEM. The blue line represents a cross-section of the area for visualisation of the
simulation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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capable of using the interaction between three layers to simulate soil
particle-size evolution. Extending the mARM model, Cohen et al.
(2010) then developed mARM3D which is able to model soil profile
PSD employing a number of dynamic soil layers at a large spatial ex-
tent. However, such a model has not been used in extensive catchment
scale simulations and detailed soil profile evolution. SSSPAM general-
ised and extended mARM3D, and coupled it with a landform evolution
model.

SSSPAM simulated soil evolution over 70,000 years to reach equi-
librium using a 30m digital elevation model (DEM) as an input. The
model considers erosion, deposition, and physical weathering over a
144 km2 area. A parametric study was carried out in the Scarborough
field which is located within the study area to explore the influences of
erosion and physical weathering processes parameters in SSSPAM. We
only conducted the parametric study in this field because of the rela-
tively long computational time of the model (Keijsers et al., 2011;
Schoorl et al., 2014). The sand content simulations using SSSPAM were
compared with the results using DSM approach and observed texture
data.

2.1. Study site

The study site is located in the Lower Hunter Valley, New South
Wales, Australia. It is delimited by longitudes 151°13′26.04″ E – 151°
19′8.4″ E and latitudes 32°42′25.2″ S – 32°51′26.352″ S with a total
area of about 144 km2. This site is in the temperate climatic zone with
warm, humid summers and cooler humid winters. The mean annual
precipitation is over 750mm. The underlying geology includes pre-
dominantly Early Permian siltstones, marl, and some minor sandstone
(Hawley et al., 1995) and Late Permian siltstones, Middle Permian
conglomerates, sandstones and siltstones in minor amounts (Malone
et al., 2016a). Topographically the area is constituted mostly of un-
dulating hills which ascend to low mountains in the southwest. Eleva-
tion ranges from 38m to 540m (Fig. 1). Land use is mainly dedicated to
viticultural industry, followed by dryland agricultural grazing systems.
The soils generally are weathered kaolinitic–smectitic type soils, ran-
ging from light to medium texture grade. The dominant soil types are
Dermosols, Calcarosols, and Chromosols (Australian Classification
System, Isbell, 2002) or Chromic Luvisols, Dystric Nitosols, Dystric
Regosols and Calcic Luvisols (according to WRB, FAO, 1998). Clay il-
luviation is therefore an important pedogenic process in the region.

2.2. Soil samples and soil analysis

The soil dataset we used contains 613 samples collected from dif-
ferent depths during different surveys (Odgers et al., 2011; Malone
et al., 2014; Fajardo et al., 2015). In addition to the whole-area survey,
detailed field-scale survey was also conducted in a field called Scar-
borough (area 1.72× 106m2) (Fig. 1). Sample locations were recorded
using a hand-held global position system (GPS) device (Garmin Map 76,
Garmin Corporation). Samples were collected and brought back to the
laboratory, air-dried at room temperature (20–22 °C). Stones/gravels
and debris were removed and then sieved to pass a 2mm sieve. The
prepared soil samples were then stored in polyethylene bottles for
analysis.

A portable visible-near infrared (vis-NIR) spectrophotometer,
Agrispec with a Contact Probe attachment (Analytical Spectral Devices,
Boulder Colorado), was used to scan the samples from 500 to 2500 nm
with a Spectralon® white tile as a reference reflectance. Clay, defined as
particles< 2 μm, silt (2–20 μm), and sand (20–2000 μm) according to
International textural classifications, were predicted from the spectra
based on a spectral library of soils from different locations in New South
Wales, Australia (Chang et al., 2001; Cozzolino and Moron, 2003;
Shepherd and Walsh, 2002). The coefficient of determination (R2) and
the concordance correlation coefficient (ρc) (Lin, 1989) were used to
evaluate the performance of soil texture prediction model. The

validation for the prediction of sand content provided an R2 value of
0.45 and ρc of 0.56. As the soil samples were collected from different
depth ranges, mass preserving depth splines were fitted individually to
each profile for the standardized depth intervals of 0–5, 5–15, 15–30,
30–60, and 60–100 cm. The vis-NIR predictions and spline fitted data
were used as observations to fit in the DSM model.

2.3. SSSPAM model

SSSPAM is a state-space matrix model that simulate spatial and
temporal variation of soil texture through a soil profile based on erosion
due to overland flow, deposition, and physical weathering (exponential
and humped models) within the profile which extends the approach of
mARM and mARM3D (Welivitiya, 2016).

SSSPAM uses a matrix equation to represent physical processes and
interactions between a number of layers. These layers are: 1) a water
layer which transports material laterally, 2) a surface soil layer with
direct contact with the overland flow, 3) several soil layers representing
the soil profile and 4) a semi-infinite bedrock layer without weathering.

2.3.1. Model description
In SSSPAM, the state vector g defines the soil particle-size at any

specific time in any layer. Entries gi in the state vector g indicate the
proportion of the material in the particle range i. In this study, there are
11 particle ranges. The alteration from one state to another state during
a time step representing a process is defined using a transition matrix
equation:

=g gRt t2 1 (1)

where gt1 and gt2 are state vectors defining the soil texture at time t1 and
t2. R is the marginal transition matrix.

2.3.2. Erosion and deposition process
In SSSPAM, the surface particle sizes change over time because of

the selective movement of finer particles by erosion, resupply of the
material from the subsurface and disintegration of particles due to
physical weathering. The entrainment of particles at any time step from
the surface is determined by the erosion transition matrix which is
formulated by the Shield's shear stress threshold. The Shield's shear
stress threshold determines the maximum particle size which can be
transported in the overland water flow (Eq. (2)). A selective movement
mechanism is used. In Willgoose and Sharmeen (2006), the mechanism
was a good fit to field data when the particles are smaller than the
Shield's shear stress threshold:

=
−

d
F

τ
γ s

1
( 1)th

s

0

(2)

where dth (mm) is the maximum particle size that the flow (water) can
dislodge from the surface layer, s is the specific gravity of the entrained
particles (here we assume s=2.65, dimensionless), γ is the unit weight
of water (N/m3) and Fs is the Shield's entrainment threshold
(Henderson, 1966). The default value for Fs, used in this study, for non-
cohesive and cohesive sediments is Fs=0.045 (dimensionless), which
is in the range recommended by a reanalysis of a large number of in-
cipient motion studies for gravel-bed rivers (Buffington and
Montgomery, 1997). τ0 is the bed shear stress (N/m2) which is given by

=τ γR Sh0 (3)

where Rh is the hydraulic radius (m) and S is the slope of the hillslope.
Rh is the ratio of cross-section area and wetted perimeter. If Rh is large,
a small area of water in the cross-section is affected by each meter of
bed, so the friction effect of the bed is limited, and the efficiency is high,
and vice versa.

The erosion rate E (m/s) of the surface is calculated from the flow
shear stress and by a detachment-limited incision model. In the de-
tachment-limited model, where the material is detached from the
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surface and eroded by definition, there is no limit to the amount of
sediment in transport. The erosion rate E (m/s) is:

=E e
q S

d
,

α α

β
50a

1 2

(4)

where e is the erodibility rate (dimensionless), q is the discharge rate
per unit width (m3/s/m), S is Slope, d50a is the median diameter of the
material in the surface layer (mm), α1, α2 and β are calibration ex-
ponents governing erosion process. α1, α2 can be derived from the shear
stress-dependent erosion physics (Willgoose et al., 1991) or calibrated
to field data. In this paper, we set α1, α2, β, e to 1.0, 1.2, 1.0 and 0.025,
same as those of Cohen et al. (2009). For a one-dimensional hillslope
with a unit width, the discharge at a particular point is simply calcu-
lated by

=q c rx,q (5)

where x is the distance down the slope from the uppermost point of the
slope (m) and r is the runoff excess generation (m3/s) (here
r=4.7×10−8 m3/s) (Cohen et al., 2009). In this study, cq is a para-
meter for modifying the discharge rate. Materials eroded will be de-
posited down the slope based on the direction of water flow. More
detailed description of the erosional and depositional processes can be
found in Welivitiya (2016).

2.3.3. Physical weathering process
In SSSPAM, the weathering module includes two aspects: (1) the

weathering mechanism for the disintegration of soil particles, and (2)
the weathering rate of each soil layer which typically depends on the
depth below the soil surface.

The breakdown of the particles in the surface and underlying sub-
surface layers is also modelled by a weathering transition matrix which
defines the change in soil texture due to the fracturing of particles
through physical weathering. Weathering is mass-preserving when
larger particles split into smaller particles. Wells et al. (2008) found
that a simple symmetric fracture model with two equal volume
daughter particles best fitted their laboratory weathering experiments.
The assumption is that a parent particle with diameter d breaks into a
single daughter particle with diameter d1 and n− 1 smaller daughter
particles with diameter d2.

= + −d d n d( 1) ;3
1
3

2
3 (6)

If the single larger particle with diameter d1 accounts for α fraction
of the parent particle, then

=d α d;1
1
3 (7)
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It is possible to simulate various fragmentation geometries by
changing the α fraction value and the number of daughter particles n.
For instance, a symmetric fracture mechanism with two daughter par-
ticles (α=0.5, n=2) and an asymmetric fracture mechanism
(α=0.99, n=11) where a large daughter has 99% of the parent par-
ticle volume, and ten smaller daughters retain 1% of the parent particle
volume.

Before examining the effect of depth dependency of weathering, we
need to distinguish two separate, but potentially related, weathering
processes: 1) soil production (bedrock weathering) rate (Heimsath
et al., 1997), at which bedrock is converted to soil materials, occurring
at the bedrock-interface; 2) soil weathering rate (Wells et al., 2006; Yoo
and Mudd, 2008), at which large soil particles break down into smaller
particles.

The assumption is that weathering rate decreases as the soil depth
increases, which is based on the well-established inverse relationship
between soil production rate and soil thickness (Torrent and Nettleton,
1978; Muhs, 1984; Stockmann et al., 2014). Two commonly discussed

soil production functions are translated here into weathering functions
of both bedrock and soil: (1) exponential depth-dependent weathering
functions (Ahnert, 1977; Heimsath et al., 1997), and (2) humped ex-
ponential depth-dependent weathering functions (Ahnert, 1977;
Minasny and McBratney, 2006). In the exponential model, the weath-
ering rate is largest at the surface and decreases as a function of depth
exponentially. The rationale is that physical weathering rates are most
greatly affected by wetting, drying, and temperature cycles (Wells et al.,
2005, 2006; Stockmann et al., 2014) which are typically strongest
closer to the surface and decline with depth (Burke et al., 2007). The
exponential function f(h)exp used is:

= ′ −f β e ;h
exp δ h
( )

( )1 (9)

where h (m) is the soil layer depth below the surface, β′ is a constant
defining the maximum weathering rate and δ1 is the depth scaling
factor. Here β′=1, δ1= 1.738.

The humped function has the largest weathering rate close to the
surface at some nonzero depth and then decreases exponentially below
that depth. The rationale of this function is that the weathering rate is
highest when water accumulates on some thickness of soil. The humped
exponential function f(h)hum is:

= −− + −
f P e e

M
[ ] ;h

hum
δ h δ δ h

( )
0

( ( )2 4) 3

(10)

where P0 (m/yr) is the maximum weathering rate, h (m) is the thickness
of the soil layer below the surface, δ2, δ3, and δ4 are constants to
characterize the shape of the function, M is the maximum value (i.e.,
the peak of the hump) to normalize the function. The values proposed
by Minasny and McBratney (2006) of P0= 0.25, δ2= 4, δ3= 6 and
M=0.04 are used here. δ4 is 0.02 to create a function that asymptotes
close to 0 (Cohen et al., 2010).

In SSSPAM, it is also currently not possible to run the combination
of both depth dependent weathering functions (exponential and
humped). Thus, the profile can only be simulated assuming one process.
In this paper, the weathering rate of each layer is determined by
modifying the nominal weathering rate W0 (1.5× 10−3/yr) and the
exponential depth-dependent weathering function f(h)expwith a para-
meter cw. The weathering rate of a soil layer at a depth of h from surface
Wh (has units of 1/time) is given by

=W c W fh w h
exp

0 ( ) (11)

2.3.4. Inputs to SSSPAM
The current DEM derived from SRTM data at a spatial resolution of

30m was used as an initial value in the SSSPAM model. In SSSPAM, the
catchment is discretized into a regular grid of pixels that each have an
altitude value representing the surface topography. In this study, for
each pixel, eleven soil layers were defined representing a surface layer
(0–5 cm) and ten subsurface layers (5–105 cm) each with a thickness of
10 cm. Bedrock starts under the bottom soil layer. Both soil layers and
bedrock are assumed initially homogeneous. The initial soil surface and
subsurface particle size distribution datasets were created based on the
study of Welivitiya et al. (2016). In each layer, 100% of the material
was assumed to be the coarsest particle-size class (> 4mm), which
represents the initial situation dominated by gravel/rock. Using the
above input data, the SSSPAM model simulated soil evolution over
70,000 years with particle-size output every 100 years. We ran the
model over this period to ensure that the particle-size distribution had
reached a steady-state condition, typically before 100,000 years
(Welivitiya et al., 2016).

2.4. Digital soil maps

Digital soil maps of soil texture were produced using spatial pre-
diction functions of soil particle size distribution based on observed soil
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texture coupled with environmental covariates using the Cubist re-
gression model. The digital maps were compared to SSSPAM model
outputs.

Cubist is a rule-based model which has been found to be quite ef-
fective in digital soil mapping (Malone et al., 2016b). It is a tree model
algorithm based on the M5 theory (Quinlan, 1992) and partitions the
predictor variates into different subsets according to “if-then” rules
(Kuhn et al., 2016). In this study, we fitted 100 Cubist models using
random samples with replacement in the R statistical software to ex-
tract mean prediction of sand and clay content.

A number of environmental covariates were considered in this study
including Landsat 7 with the Enhanced Thematic Mapper Plus (ETM+)
and terrain attributes derived from the DEM, i.e. slope, aspect, terrain
ruggedness index (TRI), terrain position index (TPI), topographic wet-
ness index (TWI), Multiresolution Index of Valley Bottom Flatness
(MrVBF), Multiresolution Ridge Top Flatness (MrRTF), Slope Length
and Steepness Factor (LS-factor), Relative Slope Position (RSP), valley
depth. All covariates were used at a spatial resolution of 30m.

2.5. Model comparison

To explore the feasibility of using SSSPAM output for mapping
particle size, we compared its performance with observed texture data.
In this study, we explore four possible models:

(a) Predictions of DSM using the Cubist model. Observed soil texture
was coupled with a number of environmental covariates. We ex-
tracted the mean prediction values of sand content and compared
the contributions of the environmental predictors.

(b) The simulated surface d50 value for 0–5 cm and simulated profile
d50 value for 35–55 and 55–105 cm respectively were added as an
additional covariate in digital soil mapping. Then we used the same
method as in (a) to predict the sand content and compared the
model performance between (a) and (b).

(c) Predictions using the SSSPAM model.
(d) Residuals were calculated as the difference between observed sand

content and the predicted value from SSSPAM. Residuals were then
modelled using DSM technique using the same method as in (a).
This exercise is to identify covariates that can be used to enhance
the performance of SSSPAM. Finally, the modelled residuals were
added to the SSSPAM simulations (c) to explore the performance of
the combination of DSM and SSSPAM model.

3. Results

3.1. Parametric study of SSSPAM

The nominal parameters used are presented in Table 1 based on the
study of Welivitiya et al. (2016). The values of one parameter at a time
were varied while keeping all others stable and the model was re-
peatedly run for sensitivity analysis of parameters.

Erosion is a function of local discharge, slope, and the median
diameter (d50) of the soil surface as indicated in Eq. (4) and is assumed
to be detachment-limited which means that material is eroded by de-
finition and there is no transport limitation (Temme and
Vanwalleghem, 2016). To simulate a more humid climate, the runoff
generation parameter in Eq. (5) was set to be 1 and 10. Fig. 2(a) and (b)
shows the steady state d50 value generated for a surface with a com-
bination of different runoff rates and weathering.

It is obvious that a higher discharge rate produces coarser surface
particles and reduced discharge rate produces a finer surface. In
Scarborough, at a higher discharge rate, the Shield's stress threshold
increases and larger particles (sand and gravel) can be eroded from the
surface. Meanwhile, the weathering rate remains constant which is
unable to breakdown the surface fast enough, leading to a coarser
surface layer. At a lower discharge rate, the Shield's stress threshold
decreases, thus allowing smaller particles to be retained in the surface
layer. Moreover, the erosion rate decreases while the weathering rate
remains unchanged which makes weathering become more dominant.
Both of these processes produce a finer surface.

Fig. 2(c) and (d) shows that the equilibrium d50 value decreases
with a combination of different weathering and erosion intensity.
Higher weathering rates break down the larger particles more rapidly.
As weathering produces fine particles at the surface layer, they can be
eroded. Subsequently, the surface layer was replaced by new weathered
materials leading to a finer surface (Fig. 2(d)). This result is consistent
with the finding of Welivitiya et al. (2016). Under limited erosion rate,
when the weathering rate is elevated to 10 times, the model produces a
uniform fine soil material at the surface across the field (d50 va-
lues< 0.5mm).

3.2. Median diameter (d50) distribution

To understand the profile development, the equilibrium surface
(0–5 cm) and subsurface (5–105 cm) d50 distribution of the study area
were simulated (Fig. 3) using the parameters listed in Table 1 (cq and
cw=1.0) and the exponential weathering functions. Clearly, the north-
eastern area is dominated by fine materials (d50<2.0mm), while the
south-western mountainous region is characterized by gravel in both
surface and subsurface. The simulated PSD that d50 is small in the
north-eastern and large in the south-western region is consistent with
the current land use. The land in the north-eastern region has been
dedicated for dryland agricultural grazing system and expansive viti-
cultural industry. In contrast, tracts of remnant natural vegetation (dry
forest) are apparent, particularly toward the south-western of the study
area (Bell, 2004). On the hillslope, high erosion and weathering rates
produce a coarser surface compared to the subsurface profile where the
effect of water erosion is less prominent. On the plains, materials from
the higher elevation area were deposited, causing a finer soil surface.

3.3. The evolution of d50

The SSSPAM model allows us to visualise how the particles evolved
and elevation changed with time through weathering, erosion and de-
position processes. Fig. 4(a) shows the initial condition for the soilscape
which consists of the gravel/rock of the whole soil profile. The evolu-
tion of soil and landscape along a cross-section of the area is presented
in Fig. 4(b)–(d).

Initially, the erosion-dominated and deposition-dominated regions
can be clearly identified. In the erosion-dominated region, the erosion is
largest at the top of the hillslope and reduces gradually down the slope,
causing a reduction in the elevation. On the hillslope, the water flow is
capable of entraining materials from the surface due to the large
transport capacity. This erosion process causes a sharp increase of the
surface d50 at the top of the hillslope. Erosion rate decreases down the
slope due to saturation of the flow with upstream sediments. At the
bottom of the hill, the weathering process produces fine particles faster

Table 1
Parameters used in the simulation.

Parameter Value Equation no

Erosion parameters α1 1.0 4
α2 1.2 4
β 1.0 4
e 0.025 4
r 4.7× 10−8 m3/s 5
cq 1.0, 10.0 5

Weathering parameters α 0.5 6
n 2.0 6
W0 1.5× 10−3/yr 11
cw 0.1, 10.0 11
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than the erosion rate which causes a decrease of the d50 at the surface
with time. In the deposition-dominated region, fine particles were re-
tained at the surface because of the low transport capacity of the water
flow. Deposition caused an increase in elevation.

It becomes apparent that the limitation of this simulation is that we
use the current DEM as input. Clearly, the erosion process has levelled
much variation leading to the current undulating hills with the highest
elevation about 540m (Fig. 1) to a smooth hillslope (elevation<400
m). On the other hand, in areas with elevation<150m, there is no
significant change of elevation due to the erosion and weathering
processes. It is clear that the spatial pattern of soil particle-size

distribution in these latter areas would be more realistic.

3.4. Identifying erosion risk areas

In the previous section, we have discussed the influence of different
runoff rates. According to the downscaled 10 km rainfall projections
from the NSW and ACT Regional Climate Modelling (NARCliM) project,
the mean annual rainfall erosivity in NSW is predicted to increase in the
future compared with the baseline period (1990–2009). Statewide,
there is about a 7% increase in the near future (2020–2039) (Yang
et al., 2015). Thus, some areas will have a higher erosion risk due to the

(a) (c)

(b) (d)

d50
(mm)

Fig. 2. The equilibrium d50 (mm) values for the surface layer (0–5 cm) simulated by SSSPAM for different runoff rates in Scarborough (a: cw= 1, cq= 1; b: cw= 1,
cq= 10) and at different exponential weathering rates (c: cq= 1, cw=0.1; d: cq= 1, cw= 10).

Fig. 3. The SSSPAM simulation of median diameter d50 (mm) in the surface (0–5 cm) (left) and subsurface (5–105 cm) (right).
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increased rainfall intensity. Fig. 5 shows the predicted future change in
d50 (mm) value for the near future (the next 20 years) when the ori-
ginal erosion rate is elevated to 10 times in SSSPAM. The change in d50
value on the hill summits region and areas with the lowest elevation in
the study area remains around 0.05mm. That is because intensive
rainfall removes fine particles consistently from the original gravel-
oriented hillslope top, which causes it to remain coarse. Fine particles
are deposited in the valleys, making the surface remain to be fine.

According to the predicted change in PSD, we can recognize areas
with increased erosion risk (identified as an increase of d50 between
0.05 and 2.85mm) and deposition areas (area with d50 decrease be-
tween −2.82 and −0.05mm). Under high rainfall intensity, finer
particles are removed from the upslope, and deposited down the hill-
slope, causing the increase of d50 on the top and decrease of d50 at the
bottom of the hillslope. In the flat parts, with elevation< 150m, some
areas like Scarborough we discussed before, are in danger under in-
tensive rainfall scenario. Identifying these erosion risk areas has im-
plications for water quality, crop productivity, vineyard management
due to the significance of the regions and their current erosion levels.
Simulation maps produced from SSSPAM over a decadal period would
be useful for continuous soil condition monitoring and management.

3.5. Predicting sand content

Based on Smeck et al. (1981) and Chittleborough et al. (1984), no
fine clay is formed through physical weathering, so here we will focus
on the prediction of sand content. The simulated steady-state results of

the SSSPAM model show that the entire study area is characterized by a
high level of sand content in the surface layer (0–5 cm) and moderate
content in subsurface layers (35–55, 55–105 cm) (Fig. 6). In general,
the sand content is found to increase from the south to north in all
layers and decrease with increasing depth along the profile.

The northern, eastern, north-eastern and south-eastern zones in the
study area are the areas with higher sand content in both surface and
subsurface layers. On the contrary, the sand content in the southwest
mountainous region is lower than the other parts of the surface layer
because the hillslope areas are dominated by gravel (the white parts in
Fig. 6).

The main reason for the higher sand content in the surface is that
the largest physical weathering rate broke the larger particles more
rapidly. As the weathering front moved farther from the surface, the
pedogenic rate declined with increasing soil thickness due to the self-
limiting nature of the pedogenic processes (Vanwalleghem et al., 2013).
That is why the subsurface layers in the mountainous region were still
dominant by gravel/rock in equilibrium (Fig. 6). Moreover, chemical
weathering of soil particles was found to be the strongest at the
weathering front close to the bedrock (Yoo and Mudd, 2008). The lack
of chemical weathering processes in this model may cause the poor
predictions of the subsurface layers.

3.6. Spatial modelling of sand content

To be able to spatially predict sand content for the whole area, we
compared four different models: predictions using DSM with the Cubist

d50
(mm)

Fig. 4. A cross-section over the study area showing the evolution of median diameter (d50) of particles. In each of the panels, the upper section is the elevation of the
soil profile and the landform, with the purple line denoting the original soil and landscape surface. The middle section is the median diameter d50 of the soil surface.
The bottom section is the d50 distribution of subsurface profile relative to the surface. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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model (Fig. 7(a)), predictions using DSM with simulated d50 value as
an additional covariate (Fig. 7(b)), predictions using SSSPAM model
(Fig. 7(c)), and SSSPAM simulations with modelled residuals
(Fig. 7(d)). The statistics of the observations are shown in Table 2 and
the locations of samples are given in Fig. 7.

3.6.1. DSM products
In the north-eastern part, sand contents vary largely for surface and

slightly for the sub-surface (Fig. 7(a)). In the south-western

mountainous region, sand content was predicted to be between 40%
and 50%. However, there is a large uncertainty in the mountainous
region because of a lack of observations. For DSM prediction, the sand
content is large (mean value of 44%) for 0–5 cm and small for 35–55
(mean of 34%), 55–105 cm (mean of 37%) with R2 values: 0.45, 0.33,
and 0.36, respectively (Table 3). This is because soils observed at most
sampling points were characterized by texture contrast soils. The high
clay subsoil is due to clay translocation (eluviation–illuviation) pro-
cesses which removed clays from surface layers and deposited them in
the subsoil (coarse-over-fine profile). The Cubist regression model in-
dicates that valley depth, LS-factor, and Relative Slope Position (RSP)
were the largest contributing factors in the prediction, indicating that
texture is governed mostly by transport process-related factors without
the consideration of other factors like land use.

3.6.2. Comparison of SSSPAM with observed data and DSM products
SSSPAM simulations (Fig. 7(c)) produce a surface with relatively

large sand content (mean value of 49%), however, the median particle
size increases with depth (high gravel content) (see details in Fig. 6).
This is because SSSPAM only considers physical processes with the
assumption of bedrock uniformity, without considering chemical
weathering and translocation of clay. In addition, transport process is
limited by a detachment-limited incision model. Compared to ob-
servations that were mainly texture contrast soils, SSSPAM simulations
have quite low R2 values (0.13, 0.01, and 0.04 for 0–5, 35–55,
55–105 cm) (Table 3), indicating that SSSPAM cannot predict the sand
content accurately. Nevertheless, SSSPAM provides predictions in the
hillslope area (high gravel contents), which DSM cannot achieve
without soil samples.

3.6.3. Using SSSPAM as a covariate
We used the d50 value from SSSPAM simulation as an additional

covariate in DSM (Fig. 7(b)). The sand content predicted from this
combined model has a mean value of 40% for 0–5 cm, 32% for
35–55 cm and 38% for 55–105 cm with R2 values of 0.48, 0.32, and
0.37. The R2 values only increase slightly for surface and remain almost
constant for subsurface compared with original DSM (Table 3). In re-
ference to the distribution patterns, it is obvious that there is almost no
difference for subsurface and slight differences for surface with the
additional covariate (d50). In this way, we might not be able to prove
the usefulness of process-based model prediction in DSM.

3.6.4. Identifying soil formation processes not covered by SSSPAM
Calculating residual as the difference between observed sand con-

tent and the predicted value from SSSPAM and combining modelled

Fig. 5. The change in d50 (mm) value for surface (0–5 cm) after 20 years under
ten times runoff rates in SSSPAM.

Fig. 6. The SSSPAM simulation of sand content (%) in 0–5 cm, 35–55 cm, 55–100 cm under steady-state condition.
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residual using DEM and SSSPAM simulations, we can see that R2 values
(0.52, 0.32, and 0.38 for 0–5, 35–55, 55–105 cm) increase significantly
for both surface and subsurface compared to the original SSSPAM

simulations (Table 3). In the mountainous areas, both Fig. 7(c) and (d)
show the gravel pattern of the surface, whereas Fig. 7(d) reveals the
clay dominated subsoil.

Sampling
points

Sand (%)

(a) (b) (c) (d)

Fig. 7. Predictions of sand content (%) using (a) DSM, (b) DSM+d50 as an additional covariate, (c) SSSPAM, (d) SSSPAM+DSM of residual (Top to Bottom:
0–5 cm,35–55 cm,55–105 cm). The different values of observations are represented by the size of circles.

Table 2
The mean and standard deviation of sand and clay observations (%).

Depth Sand Clay

0–5 cm 46.3 ± 7.2 25.0 ± 6.6
35–55 cm 38.9 ± 8.9 39.0 ± 6.9
55–105 cm 39.3 ± 8.3 37.6 ± 7.0

Table 3
The R2 values of different models.

Depth DSM SSSPAM DSM+d50 as
additional covariate

SSSPAM+DSM of
residual

0–5 cm 0.45 0.13 0.48 0.52
35–55 cm 0.33 0.01 0.32 0.32
55–105 cm 0.36 0.04 0.37 0.38
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Comparing all the figures, R2 values of Fig. 7(d) are the highest, and
the spatial patterns are the most detailed. Thus, we may conclude that
SSSPAM can be improved by DSM techniques because of the high
performance of process-related covariates in the Cubist model, such as
valley depth (100%), LS-factor (100%) and RSP (100%). On the other
hand, we can solve the limitation of DSM in areas with difficulties in
sampling (mountainous region) using SSSPAM to get an appropriate
prediction.

3.7. Assumptions and limitations

In this paper, we have only considered a uniform bedrock parent
material using the current DEM and modelling physical weathering
mechanisms with a constant weathering rate. We only discussed sand
simulation in this paper due to the difficulty in the formulation of fine
clay through physical weathering. Moreover, we did not measure gravel
content for the observed samples, and there were no samples in the high
elevation areas. That will be one reason for reduced accuracy and
precision of DSM and SSSPAM results and their comparison. Thus, there
is a need to explicitly model variable weathering rates for different
particle size classes at each time step (Vanwalleghem et al., 2013;
Salvador-Blanes et al., 2007) and incorporate chemical and biological
weathering (Green et al., 2006; Lin, 2011; Riebe et al., 2004; Roering
et al., 2002; Vanwalleghem et al., 2013). Another important aspect
needed is accounting for the effect of land use, not just the erosion from
the overland water flow.

4. Conclusions

In this study, we predicted the spatial pattern and evolution of
particle size using the mechanistic pedogenesis model SSSPAM and
compared its sand content prediction with a DSM model. It can be
concluded that:

1) SSSPAM simulations are profiles with a high sand content on the
surface and high gravel contents in subsoils. SSSPAM can explore
how the particle size will change through time and identify areas
with risks of erosion and deposition.

2) The SSSPAM model should be further developed to simulate the
equilibrium soil distribution. In this paper, we just took into account
physical processes. There is a need to incorporate chemical weath-
ering, bioturbation, clay translocation, neoformation of clay with
time explicitly.

3) The SSSPAM model can be improved by DSM techniques. We should
build a 4-dimensional (three spatial and one temporal dimension)
soil-landscape model based on pedological knowledge of soil pro-
cesses and combine the empirical spatial data with the pedological
knowledge to predict soils in space and time in subsequent studies.
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