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ABSTRACT
The conditioned Latin hypercube sampling (cLHS) algorithm is popularly used for
planning field sampling surveys in order to understand the spatial behavior of natural
phenomena such as soils. This technical note collates, summarizes, and extends
existing solutions to problems that field scientists face when using cLHS. These
problems include optimizing the sample size, re-locating sites when an original site is
deemed inaccessible, and how to account for existing sample data, so that under-
sampled areas can be prioritized for sampling. These solutions, which we also share
as individual R scripts, will facilitate much wider application of what has been a
very useful sampling algorithm for scientific investigation of soil spatial variation.
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INTRODUCTION
The conditioned Latin hypercube sampling (cLHS) algorithm (Minasny &McBratney, 2006)
was designed with digital soil mapping (DSM) in mind. cLHS is a random
stratified procedure that choses sampling locations based on prior information pertaining to
a suite of environmental variables in a given area. cLHS has been used extensively in
DSM projects throughout the world with recent examples in the last 5 years including
Sun et al. (2017) in China, Jeong et al. (2017) in Korea, Scarpone et al. (2016) in Canada, and
Thomas et al. (2015) in Australia. cLHS has also been used for other purposes and contexts
too. For example, in optimal soil spectral model calibration (Ramirez-Lopez et al., 2014;
Kopačková et al., 2017), understanding the conditions which determine Phytophthora
distribution in rainforests (Scarlett et al., 2015), and assessing the uncertainty of digital
elevation models derived from light detection and ranging technology (Chu et al., 2014).

For DSM, the algorithm exploits collections of environmental variables pertaining to
soil forming factors and proxies thereof (McBratney, Mendonça Santos & Minasny, 2003;
e.g., digital elevation model derivatives, remote sensing imagery of vegetation type and
distribution, climatic data, and geological maps) to derive a sample configuration (of
specified size), such that the empirical distribution function of each environmental
variable is replicated (Clifford et al., 2014). Presuming that soil variation is a function of
the chosen environmental variables, it is reasoned that models fitted using data collected
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via cLHS, capture all the soil spatial variability and will be applicable across the
whole spatial extent to be mapped.

However, our own experience, and from personal communication with other
researchers and field technicians, a common set of methodological questions arise when
using cLHS. These questions are:

1. How many samples should I collect?

2. Where else can I sample when a cLHS location cannot be visited because of
difficult terrain, locked gate, safety reasons etc.?

3. How do I account for existing samples when designing a new survey?

The purpose of this technical note is to describe solutions to each of these questions.
We first begin with a brief overview of the cLHS algorithm and then address each
question separately.

MATERIALS AND METHODS
A short overview of cLHS
Conditioned Latin hypercube sampling is one of the many environmental surveying tools
available for understanding the spatial characteristics of environmental phenomena.
Extended discussions about soil sampling, surveying, and monitoring of natural resources
in a broad context can be found in seminal publications such as de Gruijter et al. (2006)
and Webster & Lark (2013). cLHS has its origins in Latin hypercube sampling (LHS)
first proposed byMcKay, Beckman & Conover (1979). LHS is an efficient way to reproduce
an empirical distribution function, where the idea is to divide the empirical distribution
function of a variable, X, into n equi-probable, non-overlapping strata, and then draw
one random value from each stratum. In a multi-dimensional setting, for k variables,
X1,X2, : : : ,Xk, the n random values drawn for variable X1 are combined randomly (or in
some order to maintain its correlation) with the n random values drawn for variable X2,
and so on until n k-tuples are formed, that is, the Latin hypercube sample (Clifford et al.,
2014). Its utility for soil sampling was noted by Minasny & McBratney (2006), but they
recognized that some generalization of LHS sampling was required so that selected
samples actually existed in the real world. Subsequently, they proposed a conditioning of
the LHS, which is achieved by drawing an initial Latin hypercube sample from the
ancillary information, then using simulated annealing to permute the sample in such a
way that an objective function is minimized. The objective function of Minasny &
McBratney (2006) comprised three criteria:

1. Matching the sample with the empirical distribution functions of the continuous
ancillary variables

2. Matching the sample with the empirical distribution functions of the categorical
ancillary variables; and

3. Matching the sample with the correlation matrix of the continuous ancillary variables.

See Minasny & McBratney (2006) for full detailing of the cLHS algorithm.
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How many samples should I collect?
Ironically this question arose from a situation where we examined data from a ∼100 ha
field. Within this field 238 soil samples were collected by regular grid sampling. Soil
samples were then analyzed for key soil properties. Also collected from the field were
ancillary data including soil conductivity (from an EM38 sensor), elevation, and crop yield
data. Our interest was in determining whether the 238 soil samples adequately covered
the ancillary data space and if an alternative sampling configuration using cLHS could
be used to determine a specific sample number that would achieve the same data
coverage as the 238 sites.

We acknowledge that for most contexts, practitioners will not experience the same
situation we have just described, but will only have a suite of ancillary data and will need to
estimate an optimal sample number.

The solution to choosing an optimal number of samples is to compare the empirical
distribution functions of incrementally larger sample sizes with those of the population.
The resulting output will display a typical exponential growth (or decay) curve, depending
on what comparative metric is used, that plateaus at some point with increasing
sample size. This allows one to invoke a diminishing returns-like rule to derive an optimal
sample number. This approach was exemplified in both Ramirez-Lopez et al. (2014)
for selection of a number of observations to optimize the fitting of soil spectral models,
and Stumpf et al. (2016) for evaluating an optimal sample size to calibrate a DSM model.

Comparing the empirical distribution functions of the samples and the population can
be done in a number of ways. Stumpf et al. (2016) compared the overall variance of the
ancillary data from an entire region, hereinafter referred to as the population, with that of
the sample. The application of this approach for categorical data was not established,
but for categorical data it is only necessary to match the relative proportions of the
categories. Other metrics for continuous variables could involve comparison of the
quantiles of the empirical distributions. This would require comparing an absolute
deviation between the quantiles (which could be absolute difference or Euclidean distance)
for each ancillary variable, then deriving a unified value by combining the distances
(weighted averaging) from each variable. Alternatively, comparison could be made of
the principal components of the ancillary variables (using the approach described by
Krzanowski (1979)), which would alleviate the need to first compute distances for each
variable and then combine into a single measure of distance.

Probably a more standard approach for comparing empirical distribution functions
is the Kullback & Leibler (1951) divergence which is specifically designed for comparing
distributions (Clifford et al., 2014). The Kullback–Leibler (KL) divergence (also called
relative entropy) compares the relative proportions of samples within each histogram
bin of the distributions. The KL divergence can be computed as:

KL ¼
X

i

Oi logeOi � logeEi
� �

(1)

where Ei is the distribution of an ancillary variable for the population (i is a histogram
bin), and Oi is the distribution of the same ancillary variable from a sample.
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The KL divergence decreases towards zero as the population and sample distributions
converge (Clifford et al., 2014) and can be defined for both categorical and continuous
ancillary data. Signal processing is probably the most common use case for KL divergence,
such as the characterization of relative entropy in information systems where the
related Shannon’s information criterion (Shannon & Weaver, 1949) is widely applied.
Although useful, the KL divergence is not incorporated into the Minasny & McBratney
(2006) cLHS algorithm, where instead comparison is made using the quantity:

P
i
Oi � Eij j.

This metric could also be useful for optimization of a sample size too, but the difference
between it and the KL divergence is that it penalizes all departures from the population
values equally. With the KL divergence, the penalty of missing a sample from the tail
of a distribution is larger than the penalty of missing a sample close to the mode.

In the following, we demonstrate the usage of KL divergence to help identify an optimal
sample size in the ∼100 ha field previously described. The cLHS algorithm was run
sequentially with increasing sample sizes beginning at 10 and finishing at 500. A step
size of 10 samples was used. Each sample size was repeated 10 times to assess the
dispersion about the mean KL divergence estimate. KL divergence was estimated using a
bin number of 25 for each ancillary variable and then aggregated for all variables by
calculating the mean. Note that the justification for selecting a bin number of 25 was to
replicate the settings as implemented Clifford et al. (2014). Our own small investigations
indicated this bin number to be adequate for our data, but would recommend for
other studies and contexts to evaluate the KL divergence response to various bin
numbers via iteration. Too few bins may not adequately capture the main features
of a distribution, giving misleading low divergence values. While too many bins maybe
overly sensitive to noise and provide high KL divergence values in otherwise near
matching distributions.

In this work, The R package clhs (Roudier, 2011) was used for performing the cLHS. The
inputs into the clhs function included a table form (R data.frame) of the ancillary data
that was collected in the field of interest, that is, the proximal sensed data and yield
data. We used the default 10,000 iterations of the annealing process to run the function.
A schematic of the sample size optimization algorithm is given in Fig. 1.

Where else can I sample when a cLHS location cannot be visited
because of difficult terrain, locked gate, safety reasons, etc.?
One of the biggest criticisms levelled at cLHS is the rigidness around the sampling
configuration. For example, both Thomas et al. (2012) and Kidd et al. (2015) remarked on
the lack of guidance on what to do when a site cannot be accessed. They arrived at the
same conclusion, that rather than continuing with cLHC sampling, the more flexible
sampling approach of fuzzy stratified sampling be used. Kidd et al. (2015) demonstrated
that this alternative sampling approach was comparable to cLHS in their work.
Nevertheless, once a sampling location selected by the cLHC algorithm is unable to be
visited for any number of reasons, a replacement site needs to be selected. The introduction
of replacement sites can potentially degrade the objective of cLHS if the replacement
sites are arbitrarily selected in nearby locations that are accessible.
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Modification of the cLHS objective function can be done so that accessibility is
considered. This has been done by Roudier, Beaudette & Hewitt (2012) and Mulder,
De Bruin & Schaepman (2013) where the cost of getting to sampling locations was
incorporated into the annealing schedule of the cLHS algorithm. Such modifications,
however, do not guarantee accessibility but do increase the probability that a site will be
accessible. Adhering to an original cLHS site configuration, Stumpf et al. (2016)
selected alternative sample sites by deriving numerous test sample sets based on the
original cLHS sites with all possible combinations of the covariate data from the cLHS
strata. They selected the test sample set that most closely represented the original cLHS
sites via quantile matching. Implementing this method would require prior knowledge
of accessible and inaccessible sites, which for Stumpf et al. (2016) was based on terrain
slope and selected land use classes.

Neither of the approaches described above accommodate situations where issues
of accessibility are found in the field, that is, site inaccessibility is unplanned.

Figure 1 Schematic of sample number size optimization algorithm.
Full-size DOI: 10.7717/peerj.6451/fig-1
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Clifford et al. (2014) grappled with this issue and proposed a solution that involves
simulated annealing for optimally selecting accessible sites from a region. This method
involves multiple criteria such as the KL divergence, ease of access, and geographical
coverage, which are all combined into a single criterion. While useful, this approach is
computationally demanding to the extent that it would be difficult to apply directly in a
field setting. To obviate the need for this, an ordered list of alternative sites close to each
of the primary target sites (should the primary target site prove inaccessible) is
produced prior to entering the field.

An easier, pragmatic option as demonstrated in the USA by Brungard & Johnanson
(2015) would be to calculate a similarity measure to an inaccessible cLHS site within a
given buffer zone. In their example, a Gower’s dissimilarity index (Gower, 1971) was
used. With this approach, areas with high similarity to the inaccessible cLHS site could
then be identified and the new sample location moved to these areas if needed. Such
an approach would allow alternative sites to be determined when in the field, given an
appropriate computation device or if areas with high similarity to each location were
generated before field sampling begins. This approach is also conveniently provided
as a function in the clhs R package by Roudier (2011).

In the following, we demonstrate a similar approach to that proposed by Brungard &
Johnanson (2015). It differs by generalization of the metric used to calculate distance between
individuals for each of the variables, and it uses a membership function to derive estimates
of similarity to a site that has been deemed inaccessible. Flexibility in the selection of
distance metric allows alternatives other than the Gower distance to be considered.

We demonstrate this approach using a collection of 341 soil samples that cover the
Hunter Wine Country Private Irrigation District (HWCPID), a 220 km2 region in the Lower
Hunter Valley Region, of New South Wales, approximately 140 km north of
Sydney, Australia. The description of the sampling and data collection are described in
Malone et al. (2014). For this example, we used the following ancillary variables derived from
a 25 m digital elevation model: elevation, slope, terrain wetness index, multi-resolution
valley bottom flatness, and potential incoming solar radiation. We also used categorical
rasterized data from a 1:100,000 geological unit map (Hawley, Glen & Baker, 1995), and
a 1:250,000 legacy soil map depicting the surveyed soil units (Kovac & Lawrie, 1990) that
cover the HWCPID. In this example, each of the 341 sampling locations were assumed
to be inaccessible and alternative sites were selected for each.

We then compared the KL divergence between the original and alternative sample
sites and assess whether the alternative sample sites capture the same environmental
information using the following algorithm (also illustrated in Fig. 2).

Given an inaccessible site location:

1. Create a sampling zone (i.e., buffer) from which an alternative site can be selected
and extract all the ancillary data from inside this zone. We used a circled sampling
zone of radius 500 m.

2. Calculate the multivariate distance between the inaccessible site and all ancillary data
in the sampling zone. If ancillary data is categorical, remove all areas of the sampling
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zone that do not match the category at the initial sampling location. If ancillary data
is continuous calculate a Mahalanobis distance.

3. TransformMahalanobis distance to a similarity score using a negative sigmoid function:

Similarity ¼ 1� 1

1þ eð1�� disti�distmedÞð Þ (2)

Where dist is the Mahalanobis distance of the ancillary data i and the inaccessible
site and distmed is the median Mahalanobis distance of the available data within the
buffer area. We used the median because it is less susceptible to outliers than the
mean. The similarity is expressed on a range between 1 and 0 with numbers approaching
1 being highly similar, and is akin to a membership function.

4. Select an alternative site where the similarity is above a given threshold. In our example
this threshold was set to 0.975. Alternatively, one could rank the sites (smallest to
highest distance) and select a given number from the top for possible consideration.
Whichever the approach, an alternative site may be selected at random from the
sites that pass the threshold similarity value, or alternatively the nearest one to the
inaccessible site could be selected and so on until it is found that access to the
sampling location is possible. In our example, we selected the former option.

5. Repeat steps 1 to 4 for every inaccessible site location.

How do I account for existing samples when designing a new survey?
This is the situation where existing soil samples exist within a sampling domain, and the
user wants to derive a sampling configuration that captures environmental variation
that the existing samples fails to achieve appropriately. With its current functionality,
the clhs R package by Roudier (2011) goes some way to addressing this problem through
forming n1+n2 marginal strata per covariate. Here n1 represents existing site data,
and n2 represents marginal strata where new sampling locations can be derived. Essentially
one selects a sample size of n2, adds in the existing sample data (n1) that have previously
been collected from the study area, and then runs the clhs algorithm. This appears a
useful solution but probably needs to be tested or compared with other approaches such
as described below.

Possibly a more explicit approach to dealing with the aforementioned problem, is to
first assess the environmental coverage of the existing samples, then look for gaps (where
there is no coverage in the data space), and then prioritizing new samples to those
areas as they occur in the field. This general approach was performed by Stumpf et al.
(2016). A more thoroughly described approach is the hypercube evaluation of a legacy
sample (HELS) algorithm and its companion the HISQ algorithm described in Carré,
McBratney & Minasny (2007). The HELS algorithm is used to check the occupancy of
the existing samples in the hypercube of the quantiles of given ancillary data, and to
determine whether they occupy the hypercube uniformly or if there is over- or under-
observation in partitions of the hypercube. The companion HISQ algorithm is used to
preferentially select additional samples in areas where the degree of under-observation is
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Figure 2 Selection of alternate sites. Illustrated process of the algorithm for selecting an alternative
sampling site when a cLHS site is inaccessible. (A) A sample site (as indicated by a marked point) within
the HWCPID area that has been determined to be inaccessible. (B) A circular buffer area is created
around the site. If categorical data are being used, those categories that do not match that at the sampling
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greatest. A limitation of the HELS algorithm is that the full hypercube of all ancillary
variables needs to be computed (i.e., if there are k number of variables, k-cubes need to
be formed). We present an algorithm that is an adaptation and simplification of the
combined HELS and HISQ algorithms.

This example uses the same ancillary data and the 341 sample sites from the
HWCPID study area described earlier. For this example, we want to add an additional
100 samples while accounting for the prior 341 sample sites. We call this algorithm,
adapted HELS (aHELS). A schematic of the aHELS algorithm is shown in Fig. 3 and
described in the following:

Figure 2 (continued)
site are excluded. In the given example a circular buffer zone is used, but a portion was excluded due to
non-matching of the categorical variables. (C) The Mahalanobis distance is estimated between the
inaccessible site and all cells in the buffer area. (D) Similarity is estimated using Eq. (2) and ranges
between 0 and 1. An alternative sample site is selected if the similarity exceeds 0.975.

Full-size DOI: 10.7717/peerj.6451/fig-2

Figure 3 Adapted HELS algorithm. Schematic of the adapted HELS (aHELS) algorithm. To use this
algorithm, one needs their collection of existing site data from the study area, together with a suite of
ancillary data rasters. Finally, a specified sample size number (s) needs to be given.

Full-size DOI: 10.7717/peerj.6451/fig-3
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0a. Select a sample size of size s. In this example s = 100

0b. Extract the ancillary data values for existing observations (o). In the example o = 341.

1a. Construct a quantile matrix of the ancillary data. If there are k ancillary variables,
the quantile matrix will be of (s + 1) � k dimensions. The rows of the matrix are the
quantiles of each ancillary variable.

1b. Calculate the data density of the ancillary data. For each element of the quantile matrix,
tally the number of pixels within the bounds of the specified quantile for that matrix element.
This number is divided by r, where r is the number of pixels of an ancillary variable.

1c. Calculate the data density of ancillary information from the existing legacy samples.
This is the same as 1b except the number of existing observations are tallied within
each quantile (quantile matrix from 1a) and the density is calculated by dividing the tallied
number by o instead of r.

2. Evaluate the ratio of densities. This is calculated as the point data density divided by
the grid density.

3. Rank the density ratios from smallest to largest. Across all elements of the (s+1) � k
matrix of the ratios from step 2, rank them from smallest to largest. The smallest
ratios indicate those quantiles that are under-sampled, and should be prioritized for
selecting additional sample locations. In this ranking, it is important to save the element
row and column indexes.

4a. Begin selection of additional sample locations. Start by initiating a sample of size s

4b. While s > 0 and working down the ranked list of ratios:

5. Estimate howmany samples (m) are required to make grid density = data density. This is
calculated as o � the grid data density in the same row and column position as the density
ratio.

6. Using the same row and column position of the quantile matrix from 1a, select from the
grid data all possible locations that meet the criteria of the quantile at that position in the
matrix. Select at random from this list of possible locations, m sampling locations.

7. Set s = s - m, then go back to 4b.

The algorithm will terminate once s sample locations have been selected. A caveat to
using the aHELS algorithm is that it is not immediately amenable to optimizing sample
size as described in the earlier section. Essentially, one needs to select a sample size, then
run the algorithm.

Possibly a much more visual way—yet also complementary to the aHELS algorithm—to
assess relatively adequate and under-sampled areas is to create a map that could show such
patterns. We developed an algorithm called count of observations (COOBS) that can
achieve this objective. The COOBS algorithm is implemented on a pixel basis and requires
a stack of ancillary data pertaining to the environmental variables for a given spatial
domain, and the associated legacy data points from the same spatial domain. The
legacy points will have been intersected with ancillary data. We demonstrate this
COOBS algorithm using the HWCPID example. A schematic of the COOBS algorithm
is presented on Fig. 4.
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1. For each pixel location i:

1a. Calculate the multivariate distance to every other location in the stacked ancillary
data. We use the Mahalanobis distance because it preserves the correlation between
variables, but other distance or similarity metrics can be considered.

1b. Record the maximum distance, which we define as magpd. Note that the minimum
distance will always be zero.

2. For each pixel location i:

2a. Calculate the multivariate distance of the ancillary data between the pixel i and each of
the legacy data points. We call this the data distance (dd).

2b. Calculate a standardized distance (sdd) for each legacy data point which is simply:

sddi ¼ 1� dd
magpdi

As the sdd will scale from 0 to 1, values close to 1 means at least one observation point
is similar to the ancillary data for the selected pixel.

3. Set a similarity threshold close to 1, then count the number of legacy observations
that are equal to or better than that criteria. Save this number and pixel location
together, then move to the next pixel, that is, go back to Step 2a.

From the above described COOBS algorithm, and depending on how it is
implemented, the first step will create a raster of the target area depicting the spatial
pattern of magpd. This map is then interrogated pixel-by-pixel in step 2 to estimate the
associated COOBS number. Alternatively, the two steps of the COOBS algorithm could
be implemented as a single workflow whereby the maps of magpd and COOBS are
derived at near the same time as each other, pixel-by-pixel.

Figure 4 COOBS algorithm. Schematic of the COOBS algorithm. To use this algorithm, one needs their
collection of existing site data from the study area, together with a suite of ancillary data rasters.

Full-size DOI: 10.7717/peerj.6451/fig-4
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RESULTS AND DISCUSSION
How many samples should I collect?
The resulting output is shown in Fig. 5A which is a plot of the mean KL divergence
with increasing sample size and is a classical exponential decay with increasing sample size.
We do not show the standard deviation bars on this plot as they are very small with
increasing sample size and are not visible on the plot. However, relatively larger standard
deviations were observed at smaller sample sizes which decreased with increasing
sample sizes. We also calculated the KL divergence for the 238 samples already

Figure 5 KL divergence as function of sample size. (A) KL divergence between ancillary data of a
sample and ancillary data of the population as a function of sample size. The fitted line is a negative
exponential decay function fit to the KL divergence with the relationship y = b_1 ∙〖exp〗^((-kx))+b_0
where x and y were sample size and KL divergence respectively. The fitted parameters of b_0,b_1,and k
were 0.275, 1.185, and 0.028, respectively. The “+” symbol is the KL divergence for a grid sample of 239.
(B) Cumulative density function of the 1 - KL divergence (from A) as a function of sample size. The point
of intersection of the two straight lines is the optimal sample size as this is the point where the cdf
breaches 95%. Full-size DOI: 10.7717/peerj.6451/fig-5
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collected from the field of interest. This was found to be 0.039, and as can be seen on
Fig. 5A as the “+” symbol. This mark is above the fitted line for the same sample size using
cLHS. This indicates that (for this example), cLHS is superior to grid sampling for
capturing the variation in ancillary data for the same sample size.

To estimate an optimal sample size, we derived a cumulative density function for the
fitted line on Fig. 5A, and identified the sample size required to capture 95% of the
cumulative probability (Fig. 5B). The optimal sample size was 110. The KL divergence
for this sample size was 0.033, slightly lower (better) than that achieved with the actual
238 grid samples.

In a practical setting, the 110 samples would be used as the minimum recommended
sample size. However, one caveat is that other metrics of comparison are likely to result
in differing optimal sample sizes because the underlying calculation is different. In situations
where multiple comparison metrics are used, it might be pragmatic to assess what the
minimum and maximum optimal sample sizes are, then select a recommended sample size
in the middle. Though likely not optimal, this approach would be an improvement on the
arbitrary selection of sample size that currently occurs in most studies.

Where else can I sample when a cLHS location cannot be visited
because of difficult terrain, locked gate, safety reasons, etc.?
Table 1 presents the KL divergences for each ancillary variable for both the original sample
configuration and the alternative sample configuration for each of the 341 sites. Overall,
the mean KL divergence is equal for both sampling configurations which is a desired
outcome of the algorithm. With this relatively simple procedure or adopting the similar
approach described in Brungard & Johnanson (2015) it becomes possible to derive
alternative sample locations within the field at the time of sampling. This delivers to the
field technician an objective way to select an alternative sample site (or possibly even a
general area) during the survey campaign.

How do I account for existing samples when designing a new survey?
Figure 6A shows a map with the original 341 sites and the additional 100 sites
selected using the aHELS algorithm. The COOBS algorithm created the map on Fig. 6B.

Table 1 KL-divergence comparison between original sample and optimized sample.

Ancillary variable KL-divergence
(original)

KL-divergence
(relocated)

Terrain wetness index (unitless) 0.021 0.019

Slope (�) 0.038 0.041

Multi-resolution valley bottom flatness (unitless) 0.009 0.019

Potential incoming solar radiation (kWh/m2) 0.063 0.052

Elevation (m) 0.034 0.033

Mean 0.033 0.033

Note:
KL-divergence of the original sample configuration and the relocated sample configuration (341 sites) for each of the
ancillary data and an overall mean.
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A caveat to the COOBS algorithm though is that it is computationally heavy. Some
of this burden can easily be diffused via compute parallelization, however. Alternatively,
and in order to take advantage of spatial correlation, it could be possible to take a
representative sample from the provided ancillary data of a specified size, calculate
magpd for each of these locations, then interpolate this target variable across the whole
area. Future investigations would need to assess the viability and efficiency of this
approach.

Overall, both the aHELS and COOBS algorithms allow one to understand which
areas in a spatial domain are adequately and under-sampled. The aHELS algorithm is
explicit in selecting sites preferentially to locations in the environment that are not
captured by the existing site data. Relatedly, the COOBS algorithm provides a
visualization of general areas where under sampling is prevalent. As an aside, it may be
possible to use the COOBS derived map to design an additional survey by constraining
the cLHS algorithm to areas where the COOBS value is below some specified
threshold. Nevertheless, both aHELS and COOBS are somewhat comparable in their
objectives and ultimately generate similar outcomes as shown in Table 2 where the
proportion of sample sites selected using the aHELS is much higher in the areas where
the COOBS algorithm determined relatively low existing data coverage. For example,
87% of additional sites appear to be allocated in areas where the existing data coverage
is �10 sites.

Figure 6 Comparative outputs of aHELS and COOBS algorithms. (A) HWCPID existing 341 sites
(crosses) and additional 100 sites (dots) selected using the adapted HELS algorithm. (B) Existing sample
data coverage using the 341 HWCPID sites based on using the COOBS algorithm. Values indicate the
number of existing soil samples that are above a similarity threshold for each pixel. Lower values indicate
areas with fewer similar observations and which likely require additional sampling.

Full-size DOI: 10.7717/peerj.6451/fig-6

Malone et al. (2019), PeerJ, DOI 10.7717/peerj.6451 14/17

http://dx.doi.org/10.7717/peerj.6451/fig-6
http://dx.doi.org/10.7717/peerj.6451
https://peerj.com/


CONCLUSIONS
This technical note provides some solutions to common questions that arise when the
cLHS algorithm is used for designing a soil or any other environmental survey. We have
collated solutions that others have come up with to deal with such questions, and also
presented new and/or modified solutions too. We have presented a solution to optimize a
sample size number and to take into consideration existing soil samples. Importantly we
have introduced a relatively simple approach to relocate a site for soil sampling in
situations of inaccessibility without deteriorating the original cLHS site configuration.
R scripts with associated data examples for each of these solutions is shared in a data
repository at: https://bitbucket.org/brendo1001/clhc_sampling.
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Table 2 Similarity between adapted HELS and COOBS algorithm outputs.

Legacy sample data coverage
(derived from COOBS algorithm)

Proportions of allocated
adapted HELS sites (100)

Proportions of
existing sites (341)

0–5 0.66 0.26

5–10 0.21 0.17

10–20 0.12 0.30

20–40 0.01 0.23

>40 0.00 0.03

Note:
Proportions of original and additional sampling sites in the HWCPID selected using the adapted HELS algorithm that
occur within groupings of the sample data coverage, determined using the COOBS algorithm. We note that COOBS
means at the pixel level, the count of observations estimated to be similar in terms of the given ancillary data.
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