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Terroir canbe looselydefined as the ‘taste of place’. Our ability to createmeaningful geographical indications (GIs)
is limitedby our inability to establish terroirs on a large spatial extent (N100 km2).Weperformed an investigation
to build on previous efforts to quantitatively establish terroirs for Semillon grapes grown in Australia's Lower
Hunter Valley (Area ~200 km2). We mapped 10 soil variables, six terrain variables and three climate variables
across the entire region to a resolution of 25m.Weclustered these variables, using fuzzy-k-means, to create a sin-
gle ‘Terron map’ that parsimoniously divided the Lower Hunter Valley into six distinct environments (Terrons).
The addition of climate variables and new soil data enabled an improvement on the previously created Lower
Hunter Valley Terron map. Moreover, preliminary analysis indicated substantial variation in Semillon grape
juice characteristics across the LowerHunterValley.We concluded the region covered by the ‘Hunter Valley’Geo-
graphical Indication is more than two orders of magnitude too large to meaningfully reflect terroir. Themethod-
ologies discussed in this report could be reapplied to establish terroir and thus GIs for other perennial crops.
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1. Introduction

Standardization suppresses the diversity of agricultural systems.
Agricultural commodity standards standardize products (Galtier et al.,
2013). Similarly, eco-label standards (e.g. organic, fair trade and
rainforest friendly) standardize production methods (Daviron and
Vagneron, 2011). These mainstream agricultural marketing tools do
not reward agricultural systems for unique practices or produce
(Mancini, 2013). In general terms, this compromises the diversity of ag-
ricultural systems and thus human nutrition (Arsenault et al., 2015),
human culture (Maat and Hazareesingh, 2016) and the resilience of ag-
ricultural systems (Herrero et al., 2017).

Geographical indications (GIs) provide amechanism to conserve the
diversity of agricultural systems. Established by the World Trade Orga-
nization in 1994, GIs are defined as “a sign used on products that have
a specific geographical origin and possess qualities or a reputation that
are due to that origin” (World Intellectual Property Organization,
2018). GIs are administered differently in different countries but essen-
tially provide regions with intellectual property rights for the branding
of unique food production systems (Marie-Vivien and Bienabe, 2017).
GIs present opportunities to diversify consumer choices, conserve
human culture and boost sustainable rural development (Bramley and
Bienabe, 2012; Mancini, 2013).
).
Geographical indications generally derive their meaning from the
concept of terroir (Tashiro et al., 2018; Clark and Kerr, 2017). Terroir
can be loosely defined as the ‘taste of place’ (understanding that the spe-
cific natural, anthropogenic and/ormystical variables supposed to influ-
ence terroir is a point of contention) (Spielmann and Gélinas-Chebat,
2012). Failure to valorize the terroir(s) underpinning a GI can under-
mine the benefits GIs are designed to deliver (Besky, 2014; Josling,
2006). For example, Mexican GI legislation explicitly requires GI prod-
ucts to be linked to terroir. However, lack of enforcement in the agave-
tequila industry led to reduced product quality as well as accelerated
cultural and environmental degradation (Bowen and Zapata, 2009).

Our ability to create meaningful Geographical indications is often
limited by our ability to validate terroirs on a large spatial extent
(N100 km2). The rapid development of pedometrics and remote sensing
sparked growth in the number of terroir-related journal publications
over the past 10 years (Fig. 1). However, only a small number of studies
analyzed terroir on a district scale (e.g. Bonfante et al., 2011; Meggio
et al., 2010; Martín et al., 2007) and regional scale (e.g. Priori et al.,
2014; Vaudour et al., 2010; Carey et al., 2008). Terroir-zoning studies
published between 2002 and March 2014 had a median study area of
just 0.12 ha (Vaudour et al., 2015). This highly localized understanding
of terroir is relevant to precision agriculture but less so to GIs, which are
typically established on a large spatial extent. For example, the estab-
lishment of a GI for ‘Basmati’ rice was delayed for many years due to
the complexity involved in characterizing rice grown over such a large
area (Das, 2006).
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Fig. 1.Number of peer-reviewed journal publications indexedunder the keyword “terroir”
published every year from 2008 to 2017. Source: Web of Science Core Collections. (Single
column, no column required).
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Malone et al. (2014) attempted to validate terroirs on a 200 km2 ex-
tent in the Lower Hunter Valley of New South Wales. Carré and
McBratney (2005) developed a methodology for mapping Terrons,
basic bricks of viticultural terroirs defined as “soil-landscape entit[ies]
which combines soil and landscape at the same time”. Malone et al.
(2014) applied this methodology to divide the Lower Hunter Valley
into twelve Terrons. TheMalone et al. (2014) Terronmap has three lim-
itations that must be addressed to valorize terroirs on this large spatial
extent:

1. The Terron map captured only some of the soil variation and none of
the climate variation across the Lower Hunter Valley.

2. Dividing the Lower Hunter Valley into 12 distinct environments may
have made the Terron map unnecessarily complicated.
Fig. 2. Location of the Lower Hunter Valley with reference to the eastern coastline
3. The Terron map has not been linked to the spatial variation of grape
characteristics in the Lower Hunter Valley.

We performed an investigation with three aims designed to address
the three limitations of the Terron map created byMalone et al. (2014).
First, map 19 soil, terrain and climate variables across the Lower Hunter
Valley. Second, combine these 19maps to create a parsimonious Terron
map of the Lower Hunter Valley. Third, link this Terron map to the spa-
tial variation of Semillon grapes in the Lower Hunter Valley. Ultimately,
our goal was to improve quantitative methodologies for establishing
terroir on a large spatial extent.

2. Materials and methods

The Lower Hunter Valley is a 200 km2 area situated approximately
140 km north of Sydney (Fig. 2). The region is in a temperate climate
zone that experiences warm humid summers, cool humid winters and
an average rainfall of 780 mm per year (Bureau of Meteorology,
2017). The geology of the Lower Hunter Valley is mainly composed of
Early Permian siltstones, marl and minor sandstone (Hawley et al.,
1995). The dominant land use is viticulture, followed by dryland grazing
systems.

2.1. Soil, terrain and climate mapping (aim 1)

2.1.1. Create new soil maps
Top-soil pH (0–10 cm), sub-soil pH (40–50 cm), Australian Soil Clas-

sification soil class (Isbell, 2016) and presence of marl (lime-infused
clay) was measured at N1800 locations in the Lower Hunter Valley
between 2001 and 2016. 70% of this dataset was randomly selected to
calibrate predictive models for the four soil variables using 14 environ-
mental predictor variables and a variety of statistical methods (Table 1).
of Australia and associated capital cities. (Single column, no colour required).



Table 1
Statisticalmethods andenvironmental predictor variables used to create predictivemodels for continuous soil class, presence ofmarl, top-soil pH (0–10 cm) and sub-soil pH (40–50 cm) in
the Lower Hunter Valley. Data for the 10 terrain predictor variables was extracted from a 25 m digital elevation model acquired from NSWDepartment of Lands using the SAGA GIS soft-
ware (http://www.saga-gis.org/en/index.html). Data for the four radiometric predictor variables was extracted from a 100 m resolution radiometric map of Australia created by Minty
et al. (2009). See Appendix 1 for predictor variable definitions.

Modelled soil variable Statistical model Terrain predictor variables Radiometric predictor
variables

Continuous soil class (fuzzy soil
classification - McBratney et al.,
1992)

Multinomial
logistic regression

Altitude above channel network, Filled digital elevation model, Hill shading, Light
insolation, Mid-slope position, Multi-resolution ridge top flatness, Multi-resolution valley
bottom flatness, SAGA wetness index, Slope angle, Terrain ruggedness index

Radioelement
concentration (total, Ur,
K and Th)

Presence of Marl Binomial logistical
regression

Top-soil pH (0–10 cm) Cubist regression
and residual
kriging

Sub-soil pH (40–50 cm)

Table 2
Pre-existing soil and terrain map sources. See Appendix 1 for variable definitions.

Map
type

Variable Source

Soil Total Ti/Zr (30–60
cm)

Unpublished maps created by Boquillon (2017)

Total Ti content
(30–60 cm)

Unpublished maps created from point data
published by Odgers et al. (2011)

Total Fe content
(30–60 cm)
K radioelement
concentration

Minty et al., (2009)

Th radioelement
concentration
Soil drainage
potentiel index

Malone et al. (2012)

Terrain Mid-slope position Derivatives of digital elevation model (DEM)
acquired from NSW Department of Lands.Altitude above

channel network
Light Insolation
Multi-resolution
Valley Bottom
Flatness
Slope angle
SAGA wetness index

‘PepperTree Dairy Hill’
vineyard

‘Brokenwood Trevena’ 
vineyard 

Fig. 3. Locations of the six sampled Semillon vineyards in the Lower Hunter Valley.
Photographs of the ‘Brokenwood Trevena’ vineyard (taken August 2017) and the
‘PepperTree Dairy Hill’ vineyard (taken January 2017) illustrate the considerable spatial
variability within the Lower Hunter Valley (Single column, colour required).

Fig. 4. Newmarl map of the Lower Hunter Valley. (single column, no colour required).
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The 30% subset of the data that waswithheld from the calibration of the
models was used to independently validate all of them.

The validated predictivemodelswere applied to the entire dataset to
map soil class, presence ofmarl, top-soil pH and sub-soil pH at 25m res-
olution across the Lower Hunter Valley. For the soil class maps, the pre-
dicted probabilities for each of the 14 continuous soil classes were
centred, scaled and then generalized using principal component analy-
sis (PCA) and the first four principal components were mapped. For the
presence of marl map, pixels where the probability of containing marl
exceeded 0.25 were mapped to have marl present.
Table 3
The new Lower Hunter Valley marl model compared to the original model created by
Malone et al. (2014). The overall accuracy statistics for the models were obtained using
validation data.

Marl model Number of raw observations Overall Accuracy

Original 1399 92%
New 2103 94%

Table 4
The new Lower Hunter Valley continuous soil class model compared to the original model
created by Malone et al. (2014). The overall accuracy statistics for the models were ob-
tained using validation data.

Soil class model Number of observations Overall Accuracy

Original 1399 38%
New 2247 29%

http://www.saga-gis.org/en/index.html


Fig. 5. The first three principal components of the Australia Soil Classification continuous soil class mapped across the Lower Hunter Valley (resolution 25m) using the new soil class pre-
dictive model. (Double column, colour required).
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2.1.2. Use of pre-existing soil and terrain maps
Pre-existing soil and terrainmaps were also utilized (Table 2). K and

Th radioelement concentrationmaps were resampled from a resolution
of 100m to 25m. All other soil and terrain maps had an original resolu-
tion of 25 m.

2.1.3. Climate mapping
Climate raster data (1000 m resolution) for monthly rainfall, mini-

mum daily temperature, maximum daily temperature across the
Lower Hunter Valley from 1970 to 2016 was accessed from the
Australian National Computing Infrastructure data repository (Jones
et al., 2009). The data for each of the three climate variables was
Table 5
The sample size and root mean square error of the new pH model as well as the original
whole-soil pH model created by Malone et al. (2014). The root mean square statistics
for the models were obtained using validation data.

pH model Number of observations Root mean square error (pH units)

Original whole-soil 1399 0.76
New top-soil 1958 0.69
New sub-soil 1968 0.93

Fig. 6. New top-soil pH map and sub-soil pH map of the Lo
averaged from 1970 to 2016. The mean monthly rainfall, mean daily
minimum temperature and mean daily maximum temperature maps
were downscaled to a resolution of 25musing linear regressionmodels.
Latitude, longitude and the 10 terrain predictor variables in Table 1
were used as predictors to calibrate the models, which were optimized
using stepwise (forward and backward) selection.

2.2. Terron mapping (aim 2)

The newly created soil maps (2.2.1), pre-existing soil and terrain
maps (2.2.2.) and newly created climate maps (2.2.3.) were screened
for accuracy, re-projected to the same extent and stacked. Pixels
mapped to contain marl were removed from the stack and collated to
form a ‘marl cluster’. The environmental variables in the stack were
centred, scaled and then generalized using PCA. A random sub-sample
of 10,000 pixels (of the 318,709 remaining in the stack) were clustered
using fuzzy-k-means based on the principal components that cumula-
tively explained N80% of the variation in the stack. The fuzzy-k-means
clustering was iterated 13 times to test different numbers of classes
ranging from two to 15. The fuzzy exponent value was held constant
at 1.3. The optimal number of classes was determined on the basis the
fuzzy performance index and the relative Mahalanobis distances
wer Hunter Valley. (Double column, colour required).



Fig. 7. Collated pre-existing soil and terrain maps for the Lower Hunter Valley. See Appendix 1 for variable definitions and Table 2 for map sources. (Double column, colour required).
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Table 6
Linear regression models used to downscale climate maps.

Climate model Predictors P-value Adj. R2

Mean Minimum Temperature (1970–2016) Longitude, Latitude, Altitude Above Channel Network,
Filled Digital Elevation Model, Multi-resolution ridge top flatness, Light Insolation, Hill shading

b10−3 for all predictors 0.91

Mean Maximum Temperature (1970–2016) Longitude, Latitude, Altitude Above Channel Network,
Filled Digital Elevation Model, Multi-resolution ridge top flatness, SAGA wetness index

b 10−4 for all predictors 0.95

Mean Annual Rainfall (1970–2016) Longitude, Altitude Above Channel Network,
Filled Digital Elevation Model, Hill shading, SAGA wetness index

b 10−5 for all predictors 0.91
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between centroids. The optimal fuzzy-k-means algorithm was applied
to all pixels remaining in the stack so that each pixel was allocated to
the centroid it was closest to. The resultant clusters were mapped
along with the marl cluster to create a Terron map of the Lower Hunter
Valley. All soil, climate, terrain and Terron mapping was conducted
using R and ArcGIS (R Core Team 2018; ESRI, 2011).

2.3. Exploratory analysis: linking grape variation to the Terronmap (aim 3)

‘PepperTree Dairy Hill’ (1.2 ha), ‘Brokenwood Oakey Creek’ (1.2 ha),
‘Brokenwood Latara’ (1.3 ha), ‘Brokenwood Trevena’ (5.2 ha), ‘Pepper-
Tree Trevena’ (3.4 ha) and ‘PepperTree Braemore’ (1.6 ha) are commer-
cial Semillon vineyards in the Lower Hunter Valley (Fig. 3). These
vineyards were targeted because the Hunter Valley is famous for
Semillon wines. Grapevine age, management (including irrigation and
harvest date) and genetics varied between the vineyards but not within
the vineyards. All grapes from the same vineyard were pooled and ma-
chine crushed on the day theywere harvested in January 2017. Immedi-
ately after the crushing, 300 ml of grape juice from each vineyard was
sampled and stored at−12 °C.

All grape juice samples were thawed at room temperature and ana-
lyzed. The Brix (ameasure of sugar content) wasmeasured using a por-
table refractometer and the pH was measured using a pH meter. The
three CIE colour space variables (Smith and Guild, 1931) were mea-
sured using a portable colorimeter, centred, scaled and then generalized
using PCA. Finally, the juice samples were analyzed using gas
chromatography–mass spectrometry (GC–MS). Compounds and arte-
facts were identified in the GC–MS output using the NIST MS Search
Program (Version 2.0). The peak areas of identified compounds were
centred, scaled and then generalized using PCA. The pH and Brix princi-
pal components that explained N80% of the variation in the colour vari-
ables and principal components that explained N80% of the variation in
the GC–MS peak areas were centred, scaled and then generalized using
Fig. 8. Annual rainfall, minimumdaily temperature, maximumdaily temperature (all averaged
colour required).
another PCA. All grape juice statistical analysis was conducted using R
(R Core Team, 2018).

3. Results and discussion

3.1. Soil, terrain and climate mapping (aim 1)

3.1.1. Newly created soil maps
The addition of approximately 7000 new observations improved the

marl map. The marl model predicted the absence of marl very accu-
rately (94% user's accuracy, 100% producer's accuracy) but generally
underestimated the presence of marl (67% user's accuracy, 5%
producer's accuracy). Indeed, the newmarl map identified the presence
of marl in fewer locations than the original marl map (Fig. 4). Notwith-
standing this, the new marl model had a higher overall accuracy than
the original model (Table 3) and thus the new marl map was an im-
provement on the original map created by Malone et al. (2014).

An improvement in the soil class map was not observed. The new
continuous soil class model was calibrated with approximately 60%
more raw observations than the original model (Table 4). However,
the overall accuracy of the new soil class model was lower (Table 4).
Perhaps this was because the addition of new soil data captured new
soil variability that was not reciprocated by the environmental covari-
ates used as predictor variables. The accuracy may have also been re-
duced because the new soil class map predicted 14 continuous soil
classes, whereas the original map only predicted 12 continuous soil
classes. Nevertheless, only the first three principal components of the
predicted soil class probabilities were included in the Terron model to
account for the relatively low accuracy (Fig. 5). These three principal
components explained 51% of the variation in the 14 continuous soil
class probabilities.

The top-soil and sub-soil pH models were an improvement on the
singular whole-soil pH map created by Malone et al. (2014). The
from 1970 to 2016) downscaled from 1 km resolution to 25m resolution. (Double column,



Fig. 9.Dendrogramdepicting the relativeMahalanobis distance between 15 centroids generated by fuzzy-k-means clustering of the Lower Hunter Valley environmental variables. The five
green ovals demonstrate how five clusters could delineate the Lower Hunter Valley environmental variation. Centroids are numbered arbitrarily. (Single column, colour required). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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whole-soil pHmodel's root mean square error (RMSE) was higher than
the top-soil pH model's RMSE but lower than the sub-soil pH model's
RMSE (Table 5). All the same, delineating the top-soil and sub-soil pH
added an important dimension to our understanding of the Lower
Hunter Valley soil. For example, the range of pH values mapped in the
sub-soil pH map was greater than in the original whole-soil pH map
(Fig. 6).

3.1.2. Other soil and terrain maps
Pre-existing maps for other soil and terrain variables were success-

fully accessed and systematic spatial variation was observed in all of
them (Fig. 7). The total Ti content (30–60 cm) map was excluded
from the Terron mapping analysis because artefacts were observed in
the northwestern section of the map (Fig. 7).

3.1.3. Climate mapping
Maps for daily minimum temperature (1970–2016), daily maxi-

mum temperature and monthly rainfall (all averaged from 1970 to
2016)were successfully downscaled to 25m resolution using predictive
linear regression models (Table 6; Fig. 8). Assumptions were met for all
Fig. 10. Final Terron map of the Lower Hunter Valley depicted in ‘two and a half’
dimensions and superimposed over the digital elevation model with hill shading. The
Terron with higher probability of presence of marl was named ‘Marly’. (Double column,
colour required).
three linear regression models, even though the daily maximum tem-
perature model residuals were slightly skewed.

We observed systematic variation in mean minimum tempera-
ture, mean maximum temperature and mean annual rainfall across
the Lower Hunter Valley (Fig. 8). The range of mean minimum tem-
perature across the study area was only 0.5 °C. The variable was still
included in the Terron mapping analysis because a clear gradient was
observed across the Lower Hunter Valley and climate variables were
arguably already underrepresented in the Terron mapping analysis
(Fig. 8).
3.2. Terron mapping (aim 2)

Gridded values for all soil, terrain and climate variables (excluding
total Ti content) across the Lower Hunter Valley were successfully col-
lated. All pixels where marl could be present (P N .25) were removed
from the stack and aggregated to create a marl Terron. Like in Malone
et al. (2014) Terron map, this was done because soil containing marl
is highly desirable for viticulture (White et al., 2007). The remaining
data was clustered to classify other Terrons in the Lower Hunter Valley.
Variables were included in the Terron map calibration if they had a
strong influence on grape juice characteristics according to White
et al. (White, 2009), and if there was sufficient high-quality data to
map the variable across the Lower Hunter Valley.

The optimal number of Terron classes was determined on the basis
the fuzzy performance index (FPI) and the relative Mahalanobis dis-
tances between cluster centroids. The FPI measures the degree of fuzz-
iness created by a specific number of classes - the smaller the FPI, the
more suitable is the specified number of classes (McBratney and
Moore, 1985). The FPI was lowest with three classes and second lowest
with five classes. Additionally, the relative Mahalanobis distances be-
tween centroids in the 15-class model indicated that five clusters
would classify the Lower Hunter Valley environmental variability
most effectively (Fig. 9). On the basis of these two factors, we concluded
that five Terrons (six including the marl Terron) would create the most
parsimonious Lower Hunter Valley Terron map.

A Lower Hunter Valley Terron map with six Terron classes was suc-
cessfully created (Fig. 10). All delineated Terrons featured unique char-
acteristics (Table 7; Table 8). For example, the ‘Flodgey’ Terron, situated
in the mountainous southern parts of the study area, was characterized
by high rainfall, lower temperatures, high soil pH and steep slopes
(Table 7; Table 8). Contrastingly, the ‘Courty’ Terron, situated on the val-
ley floor, was defined by low rainfall, low sub-soil Fe and gentle slopes
(Table 7; Table 8).



Table 7
Mean, median and interquartile range for all soil and climate variables included in the Terron map for each of the Terrons.

Soil variables Climate variables

Terron
class

Topsoil pH
(0-10 cm)

Subsoil pH
(40-50 cm)

Continuous soil
class principal
components

Presence of
marl (p N .25)

Soil drainage
potential index

Total Fe (30-60
cm) (log ppm)

Total
Ti/Zr

Mean annual
rainfall (mm)

Mean min.
Daily temp.
(°C)

Mean max.
Daily temp.
(°C)

PC1 PC2 PC3

Mean
Royaly 6.0 5.7 −0.9 0.6 0.4 0.0 4.6 10.5 2.6 760 11.27 24.01
Banky 5.9 6.2 2.1 −0.1 0.4 0.0 3.8 10.3 2.5 758 11.33 24.19
Courty 5.7 6.4 2.8 0.6 −0.4 0.0 3.5 9.5 2.1 750 11.36 24.30
Flodgey 6.4 6.7 0.2 −1.4 −1.2 0.0 4.4 10.6 2.9 798 11.17 23.36
Grosey 5.8 5.5 −1.4 −0.1 0.2 0.0 4.0 10.5 2.6 751 11.32 24.18
Marly 6.1 6.5 −1.3 −0.3 −2.3 0.9 3.8 10.6 2.7 776 11.29 23.79

Median
Royaly 6.0 5.6 −1.0 0.5 0.4 0.0 4.8 10.5 2.6 766 11.26 24.04
Banky 5.8 6.3 2.2 −0.2 0.5 0.0 4.0 10.3 2.5 763 11.34 24.23
Courty 5.7 6.5 3.2 0.3 −0.4 0.0 3.6 9.6 2.1 744 11.38 24.34
Flodgey 6.4 6.6 0.0 −1.4 −1.0 0.0 4.5 10.7 2.9 796 11.16 23.37
Grosey 5.8 5.5 −1.6 −0.3 0.2 0.0 4.3 10.5 2.6 744 11.34 24.19
Marly 6.1 6.3 −1.2 −0.5 −1.9 1.0 4.0 10.7 2.7 784 11.31 23.90

IQR
Royaly 0.4 0.7 1.8 1.7 1.0 0.0 0.6 0.18 0.14 32 0.08 0.30
Banky 0.4 0.6 1.8 1.6 1.3 0.0 1.0 0.20 0.19 34 0.11 0.20
Courty 0.3 0.9 2.4 2.3 1.4 0.0 1.3 0.62 0.23 30 0.04 0.19
Flodgey 0.5 0.8 2.4 1.3 1.6 0.0 0.9 0.21 0.19 17 0.07 0.37
Grosey 0.3 0.4 1.6 1.6 1.2 0.0 1.3 0.17 0.16 50 0.10 0.18
Marly 0.6 1.1 1.4 2.3 2.0 0.0 1.6 0.20 0.35 51 0.13 0.69
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3.3. Linking grape variation to environmental variation (aim 3)

There was substantial variation in the grape juice chemical con-
tent, pH, colour and Brix across six Lower Hunter Valley Semillon
vineyards (Fig. 11; Fig. 12). It must be noted that this was only an
exploratory analysis. Rigorous statistical analysis with a much larger
sample size and precise meta-data (grapevine age, management
and genetics) will be required to link grape juice spatial variation
to the Terron map.
Table 8
Mean, median and interquartile range for all terrain variables included in the Terron map for e

Terrain variables

Terron
class

Altitude above
channel
network (m)

Mid-slope
position
index

Multi-resolution
valley
bottom flatness

Slop
angle
(deg

Mean
Royaly 13.9 0.41 1.0 3.1
Banky 5.1 0.76 3.9 1.4
Courty 7.1 0.78 4.0 1.6
Flodgey 40.7 0.52 0.4 8.8
Grosey 28.7 0.36 1.1 3.4
Marly 63.3 0.55 0.3 7.5

Median
Royaly 12.9 0.41 0.7 2.9
Banky 3.4 0.79 3.9 1.2
Courty 2.7 0.85 4.2 1.2
Flodgey 37.4 0.55 0.2 7.5
Grosey 26.9 0.35 0.6 3.0
Marly 57.5 0.61 0.1 6.6

IQR
Royaly 10.1 0.38 1.2 1.9
Banky 5.6 0.18 1.9 1.1
Courty 9.4 0.18 3.3 1.5
Flodgey 29.0 0.47 0.6 6.0
Grosey 16.5 0.36 1.3 2.3
Marly 32.2 0.38 0.3 5.6
4. General discussion

Terroir can vary significantly over short distances. Our study demon-
strated that the Lower Hunter Valley (a region of just 200 km2) can be
cleanly divided into six Terrons. However, the number of Terrons iden-
tified was low considering the size of the study area. Based exclusively
on a weak trend observed in recently published terroir-zoning studies,
we would expect the Lower Hunter Valley to be divided into 14 Terrons
(Fig. 13).
ach of the Terrons.

e

rees)

Light
insolation
index

SAGA
wetness
index

K radioelement
concentration
(ppm)

Th radioelement
concentration
(ppm)

1710 14.7 0.82 7.90
1704 18.3 0.99 9.07
1698 19.2 1.01 9.05
1684 11.7 0.62 5.73
1698 13.7 1.35 11.61
1715 10.1 1.13 9.37

1713 14.8 0.83 7.90
1705 18.3 0.98 8.99
1701 19.6 0.98 8.92
1708 11.2 0.56 5.70
1701 13.7 1.35 11.51
1723 9.8 1.21 10.02

53 2.4 0.30 2.45
22 2.0 0.27 2.39
22 2.5 0.22 1.99
146 3.4 0.21 1.73
58 2.8 0.35 2.23
114 1.3 0.67 4.65



Fig. 11.Depiction of the variability in chemical content (captured byGC–MS)between thegrape juice samples collected from the six Semillon vineyards. Each row represents a single grape
juice sample and each column represents an organic compound identified in at least one of the six juice samples. The relative concentration of each compound in each sample is
represented by a colour hue spectrum. (Double column, colour required).
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The Australian ‘Hunter Valley’ GI (which contains three sub-regions
with their own GIs) has an area of 200,000 km2. This is two orders of
magnitude larger than our area of study, in which we observed six dis-
tinct Terrons and substantial grape juice variability (albeit with a very
low sample size) (Fig. 14). Therefore, we conclude that the “Hunter Val-
ley” GI is not a meaningful reflection of terroir.

Further research must investigate terroirs on a larger spatial extent
to bridge the gap between science and policy. The spatial resolution of
the ‘Hunter Valley’ GI is too coarse to meaningfully reflect terroir. How-
ever, creating and validating a GI for every vineyard in theHunter Valley
would be impractical. For example, it currently costs 27,500 AUD to
lodge an application to add, omit or change a GI in Australia (Wine
Australia, 2016). In view of this, further research will be needed to par-
simoniously establish terroirs on a large spatial extent and thus make
terroir-zoning studies actionable for GI policy makers.

A more direct approach may be required to establish terroirs on a
large spatial extent. Terroir imposes a simple concept on a complex sys-
tem.We attempted to validate terroirs using ‘Digital TerronMapping’ - a
bottom up approach. We clustered environmental variables and
attempted to link grape juice characteristics to the clusters. This ap-
proach has two limitations:

1. The selection of environmental variables for the Terronmap is not di-
rectly data driven. The Terron map relies on the assumption that all
included soil, climate and terrain variables influence wine character-
istics. Conversely, themap assumes that all excluded soil, climate and
terrain variables do not influence wine characteristics.

2. The Terron map does not account for non-environmental influences
on wine characteristics. For example, the Terron map does not ac-
count for the effect of variability in viticulture practices, winemaking
techniques and grapevine genetics (Fig. 15).
Fig. 12. Comparison of six Semillon grape juice sampleswith reference to the Terronmap. The si
in the colour, pH, Brix and GC–MS data. The six samples are colour-coded based on their Terro
‘Royaly’). (Single column, colour required). (For interpretation of the references to colour in th
Perhaps ‘Digital Terroir Mapping’ (a top down approach)would be a
more effective strategy for validating terroirs on a large spatial extent.
Digital Terroir Mapping would be a reversal of the Digital Terron Map-
ping process. Similar to the method implemented by Vaudour et al.
(2010), we would create spatial clusters of wine quality variables (e.g.
alcohol content, colour, phenolic content, tannin content, pH, titratable
acidity, sensory evaluations). This would enable a direct validation of
terroir for the consumable product and hence all factors that influence
terroir would be captured (Fig. 15). Moreover, Digital Terroir Mapping
would support the data driven delineation of what causes terroir. We
could quantify the effect of specific environmental, anthropogenic and
genetic variables on wine characteristics by linking the spatial variation
of individual variables to the digital terroir map. Ultimately, this ap-
proach may facilitate a systems model for terroir.

Digital Terroir Mapping would have its own challenges. First, the
clustered wine quality variables may not capture all variability in
wine quality. Second, there is less pre-existing data available to cre-
ate and downscale a digital wine map of the Lower Hunter Valley.
Third, Digital Terroir Mapping may not be able to account for terroir's
temporal variability, which is becoming increasingly significant due
to climate change (Clark and Kerr, 2017). Even so, Digital Terron
Mapping and Digital Terroir Mapping are transferrable methodologies
with potential to quantitatively validate terroirs on a large spatial
extent.

5. Conclusions

Our analysis arrived at five conclusions:

1. There is systematic spatial variation in soil, climate and terrain vari-
ables across the Lower Hunter Valley. These variables included top-
x samples are clustered based on principal components that explained 95% of the variation
n class (yellow = ‘Courty’, light green = ‘Grosey’, dark green = ‘Flodgey’, mid-green =
is figure legend, the reader is referred to the web version of this article.)



Fig. 13.Number of Terron units versus the log-transformed study area for Terronmaps generated by this study (circle) and 73 other studies (green diamonds) published in peer-reviewed
journals between 2002 and March 2014. Data was obtained from Vaudour et al., (Vaudour et al., 2015). The equation of the trend line is y = 2.15× + 8.69 (R2 = 0.17). (Single column,
colour required). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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soil pH, sub-soil pH, Australian Soil Classification soil class,
presence of marl, rainfall, maximum temperature and minimum
temperature.

2. The Lower Hunter Valley can be parsimoniously divided into
six distinct Terrons. These Terrons were mapped to a resolution of
25 m.

3. There appears to be substantial spatial variation in grape juice char-
acteristics within the Lower Hunter Valley. However, a much greater
Fig. 14. The ‘Hunter Valley’ Geographical Indication (GI) region r
number of grape juice sampleswill be required to validate the Terron
map.

4. The region covered by the ‘Hunter Valley Geographic Indication’ is
more than two orders of magnitude too large to meaningfully reflect
terroir.

5. Digital Terron Mapping and Digital Terroir Mapping methodologies
could be applied to validate terroirs in other regions, createmeaning-
fulGIs for themand thus support thediversityof agricultural systems.
elative to the Terron map. (Single column, colour required).



Fig. 15. A non-exhaustive list of factors that may influence terroir. (Single column, no
colour required).
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Appendix 1. Definitions

Terrain variables:

• Altitude above channel network: difference between the elevation
and an interpolation of a channel network base elevation.

• Filled digital elevation model: original digital elevation model but
with all sinks filled.

• Hill shading: solar radiation taking into account the slope aspect and
digital elevation of surrounding cells.

• Light insolation: measure of potential incoming solar radiation.
• Mid-slope position: a relative slope position parameter which gives a
classification of the slope position in both valley and crest positions.

• Multi-resolution ridge top flatness: a topographic index designed to
identify high flat areas at a range of scales.

• Multi-resolution valley bottom flatness: a topographic index derived
using slope and elevation to classify valley bottoms as flat, low areas.

• SAGA wetness index: wetness index computed as a tangent function
of slope angle and specific catchment area.

• Slope angle: measured in degrees, is the first derivative of the eleva-
tion of the digital elevation model in the direction of the greatest
slope.

• Terrain ruggedness index: the mean difference between a central
pixel in the digital elevation model and its surrounding cells.

Soil variables:

• Electrical conductivity (0–0.5m, 0–1m, 0–1.6m, 0–3.2m): integrated
soil conductivity measurements (in mS m−1) for depths 0–0.5 m,
0–1 m, 0–1.6 m and 0–3.2 m obtained using a DUALEM-21S (Dualem,
Milton, ON, Canada) sensor.

• Radioelement concentration (total, Ur, K and Th): estimated concen-
trations (in ppm) for the total radioelement concentration in the soil
as well as the concentrations for radioelements of Ur, K and Th. Esti-
mations were derived from gamma-ray spectrometric surveys
(Minty et al., 2009).

• Soil drainage potentiel index: soil drainage potential estimated from
soil colour dataset (Malone et al., 2012).
• Total Fe content (30–60 cm): total Fe content (in ppm) at depths
30–60 cm and log-transformed.

• Total Ti content (30–60 cm): total Ti content (in ppm) at depths
30–60 cm and log-transformed.

• Total Ti/Zr (30–60 cm): ratio of total Ti content and total Zr content at
depths 30–60 cm.

Appendix A. Supplementary data

Supplementary data associated with this article can be found in the
online version, at https://doi.org/10.1016/j.geodrs.2019.e00209. These
data include the Google map of the most important areas described in
this article.
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