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Pedology and digital soil mapping (DSM)
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Summary

Pedology focuses on understanding soil genesis in the field and includes soil classification and mapping. Digital
soil mapping (DSM) has evolved from traditional soil classification and mapping to the creation and population of
spatial soil information systems by using field and laboratory observations coupled with environmental covariates.
Pedological knowledge of soil distribution and processes can be useful for digital soil mapping. Conversely,
digital soil mapping can bring new insights to pedogenesis, detailed information on vertical and lateral soil
variation, and can generate research questions that were not considered in traditional pedology. This review
highlights the relevance and synergy of pedology in soil spatial prediction through the expansion of pedological
knowledge. We also discuss how DSM can support further advances in pedology through improved representation
of spatial soil information. Some major findings of this review are as follows: (a) soil classes can be mapped
accurately using DSM, (b) the occurrence and thickness of soil horizons, whole soil profiles and soil parent
material can be predicted successfully with DSM techniques, (c) DSM can provide valuable information on
pedogenic processes (e.g. addition, removal, transformation and translocation), (d) pedological knowledge can
be incorporated into DSM, but DSM can also lead to the discovery of knowledge, and (e) there is the potential
to use process-based soil–landscape evolution modelling in DSM. Based on these findings, the combination of
data-driven and knowledge-based methods promotes even greater interactions between pedology and DSM.

Highlights

• Demonstrates relevance and synergy of pedology in soil spatial prediction, and links pedology and DSM.
• Indicates the successful application of DSM in mapping soil classes, profiles, pedological features and

processes.
• Shows how DSM can help in forming new hypotheses and gaining new insights about soil and soil processes.
• Combination of data-driven and knowledge-based methods recommended to promote greater interactions

between DSM and pedology.

Introduction

Pedology is the study of soils as they occur in their environment.
This includes soil formation, genesis, classification and cartography
(Bockheim et al., 2005). These topics make pedology relevant for
tackling global issues such as soil, food, energy and water security,
and climate regulation and human health (McBratney et al., 2014).
Pedology is an integrative and extrapolative science (Singer, 2005).
Pedologists integrate an understanding of landscapes, vegetation
patterns, climate and human activity into knowledge about soils
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and their distribution, and extrapolate their knowledge into soil
maps. Jenny’s (1941) clorpt model provides the first framework in
pedology by quantifying or linking the relation of soil with state
factors controlling soil formation. It is also the theoretical backbone
for digital soil mapping (DSM), where the spatial soil-forming
factors are used in quantitative spatial prediction (McBratney et al.,
2003).

Lagacherie & McBratney (2007) defined DSM as “the creation
and population of spatial soil information systems by numerical
models inferring the spatial and temporal variations of soil types
and soil properties from soil observations and knowledge and from
related environmental variables.” The explicit geographic nature of
DSM makes it relevant to pedology (Lin et al., 2006). For example,
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observed soil characteristics (soil horizons and soil properties) serve
as both evidence of past processes and an indicator of present
processes, which are useful for understanding and predicting soil
variation. Conversely, spatial information on soils can provide
vital input to pedologic models (Bui, 2016; Thompson et al.,
2012). Therefore, the effective links between pedology and DSM
can improve the connection between soil spatial distribution and
process-based models.

The aim of this review was to (a) document the application
of DSM in pedology, (b) highlight the relevance and synergy
of pedology in soil spatial prediction through the expansion of
pedological knowledge and (c) discuss how DSM can support
further advances in pedology through improved representation
of spatial soil information. The structure of this review is as
follows: first we discuss pedology models and DSM concepts; this
is followed by mapping soil classes, mapping soil profiles, and
pedological features and processes. Finally, we discuss the relation
between pedological knowledge and DSM and apply mechanistic
pedological models.

Pedology models and DSM

The Clorpt model

The scientific rationale for making soil maps has been the clorpt
model of Jenny, who considered soil as a dynamic system and
formalized quantitatively the soil-forming factors, previously
discussed by Hilgard (1860) and Dokuchaev (1883), into the
state-factor equation:

s = f (cl, o, r, p, t, …) , (1)

where s= soil, cl= climate, o= organisms, r = relief, p= parent
material and t= time. The ellipsis (… ) is reserved for additional
unique factors that might be locally significant, such as atmospheric
deposition (Thompson et al., 2012). “The factors are not formers,
or creators, or forces; they are variables (state factors) that define
the state of a soil system” (Jenny, 1961). The state factors are
independent from the soil system and vary in space and time
(Amundson & Jenny, 1997).

Pedologists generally apply the mental, qualitative version of the
clorpt principle for conventional soil mapping. Based on coupling
the factors of soil formation with soil–landscape relations, soil sur-
vey is a scientific strategy (Hudson, 1992) and a ‘knowledge sys-
tem’ (Bui, 2004). When pedologists or soil surveyors map the soil,
they take into account the purpose of the map, the scale of publica-
tion, the soil-forming factors and their relative prevalence across
the region studied and observed soil–landscape relations. How-
ever, pedologists or soil surveyors often cannot fully transfer their
knowledge into a map. Therefore, the soil map produced by a soil
surveyor can be considered as a structured representation of knowl-
edge of the soil’s spatial distribution in the landscape that reflects
the pedologists’ mental model. It also reflects the operational con-
straints of the soil survey (e.g. costs, accessibility, and so on). These
mental models are generally described as narratives, are difficult to

replicate and can be unsuitable for quantitative studies (Hartemink
et al., 2010). Moreover, these models lack spatial detail and assess-
ment of the accuracy of soil attributes (Adhikari et al., 2014).

Jenny’s clorpt model can also be used quantitatively (i.e. a single
factor is defined while the others are held constant). This functional
factorial model has been important because it changed the way that
soils were studied, leading to the development of empirical models
to describe pedogenesis in the form of mathematical relations.
Climo-, bio-, topo-, litho- and chrono-functions, for example, are
useful for quantifying the effects of climate, organisms, topography,
parent material and time, respectively, on soil formation (Brantley
et al., 2007; McBratney et al., 2003; Yaalon, 1975).

Jenny et al. (1968) further proposed an “integrated clorpt” model,
where all factors can be modelled simultaneously in the form of a
multivariate linear regression:

S = a + k1 MAP + k2 MAT + k3 Parent material + k4 Slope

+ k5 Vegetation + k6 Latitude, (2)

where S indicates soil properties (texture, C, N, cations and the first
principal component of clay minerals), k are empirical coefficients,
and MAP and MAT correspond to mean annual precipitation and
temperature. This approach considered the combined influence of
multiple variables and tried to explain the controlling factors of
soil properties. The development of regression methods, coupled
with computing power, has made the clorpt model a viable tool for
quantitative soil science.

Scorpan model

McBratney et al. (2003) reformulated Jenny’s state-factor model
into the following equation for mapping soil:

S = f (s, c, o, r, p, a, n) + e, (3)

where S represents soil attributes or classes that can be predicted
from s, soil, other or previously measured attributes of the soil, c
is climate, o are the organisms (including land cover and natural
vegetation), r is the topography, p is the parent material, a is age
or time, n is spatial location or position and e is spatially correlated
residuals. Rooted in the clorpt model, the functional relations of the
scorpan model between soil attributes or classes and environmental
covariates can now be readily formulated using mathematical or
statistical models. Scorpan factors are more than just environmental
covariates because the model includes soil and spatial position. The
scorpan equation is different from Jenny’s factorial model or the
Sergey–Zakharaov equation (Florinsky, 2012). Basically, the clorpt
model was designed to produce knowledge, whereas scorpan was
not intended for explaining soil formation, but rather a pragmatic
empirical model for predicting soil properties and soil classes
(production of maps). Nevertheless, we can still put pedological
knowledge into the mapping process, or extract it from the map, as
will be discussed in the ‘Pedological knowledge and DSM’ section.
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The scorpan approach can also be defined as a partially dynamic
method (McBratney et al., 2003) by taking the partial differentials
of the scorpan factor over time (e.g. do/dt or dc/dt), which
means that we can project the existing soil map forward in
time. Compared with a fully dynamic simulation model, this
approach has limitations, such as lack of feedback and possible
extrapolation problems. However, it is a quick and relatively simple
way of estimating soil changes, and it has attracted considerable
application in projecting the fate of soil carbon under future climate
change scenarios, with examples from Gray and Bishop (2016) and
Yigini & Panagos (2016).

STEP–AWBH model

To account explicitly for the importance of anthropogenic factors
in soil formation, Grunwald et al. (2011) proposed another concep-
tual model for understanding soil properties for a pixel of size x (px)
at a specific location on Earth, at a given soil depth (z) and at the
current time(tc):
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where SA is the soil property of interest, which is a function of
a number (j= 0,1,… n) of relatively static environmental factors
(only at tc) and dynamic environmental conditions (with values rep-
resenting dynamics through time ti with i= 0,1,…m), S represents
ancillary soil properties, T is topographic properties (e.g. elevation,
slope gradient, slope curvature and compound topographic index),
E represents ecological properties (e.g. physiographic region and
ecoregion), P is the parent material and geologic properties
(e.g. geologic formation), A represents atmospheric properties
(e.g. precipitation, temperature and solar radiation), W is water
properties (e.g. soil moisture and surface runoff), B represents biotic
properties (e.g. vegetation or land cover, spectral indices derived
from remote sensing and organisms) and H is human-induced forc-
ings (e.g. land use and land-use change, contamination and distur-
bances).

In the scorpan model, topography (r) indirectly expresses the
effects of hydrology on soil, whereas the STEP–AWBH model
attempts to separate hydrologic properties (W) from topography
(T) and climate (A) factors. Similar to the scorpan model, the
STEP–AWBH model is spatially explicit by constraining soil
properties to a specific pixel location (Thompson et al., 2012). The
STEP–AWBH model is temporally explicit with the inclusion of
time (Zhang et al., 2016). Although the STEP–AWBH model seems
to be more explicit, the real application is still minimal because of
the difficulty of fulfilling and differentiating all the factors.

Digital mapping of soil classes

Mapping the spatial distribution of soil taxonomic classes is impor-
tant for characterizing soil spatial variation (Lagacherie, 2005)
and informing soil use and management decisions. Unsupervised,
supervised and knowledge-based approaches have been used to pro-
duce maps of soil classes (MacMillan, 2008). As discussed in the
previous section, the DSM approach starts with an input of soil class
observations, selection of covariates that can represent the spatial
distribution of soil classes, selecting prediction function or model,
and assessing the accuracy of the model.

Top-down and bottom-up soil class

Here, we identify approaches to soil classification as top-down
and bottom-up (Figure 1), also known as downward and upward
approaches or classification from above and below (Odgers, 2010).
Mapping soil taxonomic classes digitally is usually done by
top-down classification (Minasny & McBratney, 2007).

Traditional top-down classification involves the division of the
soil universe into mutually exclusive, non-overlapping subclasses
based on a single soil property or several (Odgers et al., 2011a).
For example, Manil (1959) stated, “it starts from general facts and
principles and goes down to more and more detailed categories
as observations proceeds.” Most widely used national and interna-
tional soil classification systems such as the US Soil Taxonomy and
World Reference Base (WRB) are examples of top-down systems.

The top-down soil mapping approach (Figure 2) associates the
estimation of soil properties (e.g. soil depth, texture, structure,
moisture, temperature, cation exchange capacity, base saturation,
clay mineralogy, organic matter content and salt content) with
an existing soil classification system, allocates soil profiles into
different hierarchical categories, such as order, suborder, great
group, subgroup, family and series, and then make maps for such
classes. One of the limitations of the top-down approach is that
it is not formulated to characterize the continuous nature of soil
variation by using mutually exclusive and non-overlapping soil
classes. The top-down classification has generally been qualitative
and too subjective when deciding which diagnostic soil properties
to use, as well as where to place taxonomic divisions in the chosen
properties (Odgers, 2010).

Bottom-up classification involves the aggregation of similar indi-
viduals into classes, and similar classes into higher-level classes,
based on the assumption that we can identify the individuals
and the overall similarity between individuals can be described
quantitatively (Odgers, 2010). This approach is more objective and
quantitative than the top-down method.

Odgers et al. (2011a) created a set of continuous soil layer classes
based on soil properties measured in the laboratory and estimated
from soil mid-infrared spectra using a fuzzy k-means clustering
algorithm. These soil layer classes are ‘composite objects,’ that
is, entities that are composed of sub-entities arranged in a specific
sequence, for example soil profiles comprise sequences of soil
layers. To create a soil profile, Odgers et al. (2011b) used the
‘Outil statistique d’aide à la cartogénèse automatique’ (OSACA)

© 2019 British Society of Soil Science, European Journal of Soil Science, 70, 216–235



Pedology and digital soil mapping 219

Figure 1 Schematic representation of the difference between top-down and bottom-up approaches to classification (from Odgers, 2010).

Figure 2 Top-down soil mapping.

algorithm of Carré & Jacobson (2009) to create continuous ‘soil
series classes’ based on a set of continuous soil layer classes.

Bottom-up classification starts at the fundamental level, the soil
layer, and builds upwards to soil series classes and mapping unit
classes (Figure 3). This approach provides a greater degree of
objectivity by using taxonomic distance and membership functions.
It is a first step towards the development of a functional numerical
soil classification system. One drawback of the approach is that
it requires a large number of observations, soil analyses and
descriptions, which can be time consuming and expensive.

Covariate selection: Expert versus machine

Various covariates representing soil state factors (e.g. climate,
terrain factors and remotely sensed imagery) have been widely used
in the predictive models (Heung et al., 2016; Marchetti et al., 2011;
Pahlavan-Rad et al., 2014). The most easily quantified and directly
correlated state factors are terrain with DEM derivatives as the
main predictor variables (McBratney et al., 2003). However, not
all soil state factors have representative covariates that are directly
related to a particular factor; some of the covariates have indirect
or multiple-factor relations. For example, direct estimates of time
are absent from predictive models unless incorporated manually

(Noller, 2010). However, indirect estimates of time can be inferred
from relative landscape position (e.g. on the basis of principle
of superposition), surface reflectance (e.g. red surfaces indicate
a highly weathered soil), weathering indices based on gamma
radiometry (Wilford, 2012), or parent material and geological maps
(Thompson et al., 2012).

In addition to continuous variables, categorical maps such as geol-
ogy, parent materials, geomorphology and legacy soil survey maps,
which were derived from manual interpretation, can also be used as
covariates (Pahlavan-Rad et al., 2014; Taghizadeh-Mehrjardi et al.,
2015). In particular, geomorphological maps (created manually)
have been found to be a useful source of information for assessing
soil parent material and soil genesis, and dominant in determining
the spatial distribution of soil classes (Scull et al., 2005). One issue
of using such legacy information is that it can often be quite coarsely
resolved and general. Such information has the potential to thwart
rather than progress the application of DSM in some areas, meaning
that the value of such data in a given mapping domain would need
to be evaluated on a case by case basis.

Brungard et al. (2015) derived 113 covariates from DEM and
Landsat imagery at several resolutions. The question that naturally
arises with many covariates is which should be used as predictors
in a DSM model. The selection of relevant covariates for mapping
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Series classes

Layer classes

Figure 3 Bottom-up soil mapping (adapted from Odgers et al., 2011b). Layer classes are labelled as E1–E7 and soil series classes as S1–S9.

soil classes in an area can be based on the researchers’ expertise in
the domains of soil–environment processes. However, the decision
can be biased or even fail in regions where knowledge on process is
insufficient (Vasques et al., 2012). Brungard et al. (2015) compared
how covariates are selected based on the accuracy of the derived
soil maps.

1. Covariates selected a priori by soil scientists familiar with each
area, anticipating how soil–landscape relations would best be
represented for modelling.

2. The covariates in set 1 plus 113 additional covariates derived
from DEM and Landsat imagery at several resolutions that
represented a large suite of potentially useful covariates.

3. Covariates selected using recursive feature elimination, a
machine learning algorithm, from covariate sets 1 and 2.

The study found that for soil class prediction, covariates selected
by recursive feature elimination consistently gave the most accurate
predictions. Models using covariates selected by expert knowledge
consistently performed the worst. This finding appears counterintu-
itive because expert judgement from pedologists would seem to be
more reliable, given they would have a better understanding of the
soil variation and potential reasons and controlling factors for this
variation, relative to the tools of a data modeller. However, this was
also not surprising because in clinical studies it has been shown
that statistical prediction consistently outperforms expert judge-
ment (Grove et al., 2000). When faced with a large number of vari-
ables (covariates), a pedologist might not be able to identify optimal
covariates a priori because of the complexity of soil-forming pro-
cesses (Brungard et al., 2015).

In most DSM studies, covariate values are extracted at the location
where soil records have been sampled. Soil properties in larger
neighbourhoods might be different because of local geomorphic
processes even if all other state factors are identical (Behrens et al.,
2010). It is necessary therefore to incorporate local and regional
geomorphic context by incorporating information not only from
the specific point, but also from its surrounding environment. Some

studies tried to include a ‘window size’ to calculate terrain attributes
and set covariates at various resolutions to resolve local and broader
information together (Smith et al., 2006). Behrens et al. (2010)
presented the contextual elevation mapping (ConMap) approach
using differences in contextual elevation from the centre pixel to
each pixel across multiple neighbourhoods instead of common
terrain attributes. Instead of trying different neighbourhood sizes
for calculating terrain attributes, recent development of a deep
learning approach for image classification, such as the convolution
neural network (CNN) (Padarian et al., 2018), could be useful for
extracting information on covariates from images. The CNN model
can extract features from images and then use these as input to
the model. This method has started to be applied in DSM studies
(Padarian et al., 2018).

Models and model selection

Following covariate selection, there is now a large array of mathe-
matical, statistical and numerical models that can be used to analyse
the direct or indirect relations between soil classes and environ-
mental factors. According to Hengl et al. (2007), there are five
types of models for soil class mapping.

1. Covariate classification techniques, which are mainly unsuper-
vised classification of the scorpan variables.

2. Taxonomic distance techniques, which transform soil classes
into continuous variables.

3. Multinominal logistic regression techniques.
4. Geostatistical techniques based on kriging.
5. Expert systems based on qualitative assessment and auxiliary

data.

The above methods can be grouped into three categories: unsuper-
vised (1), supervised (2–4) and knowledge-based approaches (5).

Selection of the above models can be based on the amount of
input data. When there are few data only, unsupervised classi-
fication or experts’ existing knowledge of the domains are the
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optimal options. When the soil classes can be defined exactly,
expert knowledge can be used to create locally appropriate clas-
sification rules (MacMillan, 2008). When more input data are col-
lected, a data-driven approach is complementary, such as regression
techniques, neural networks or the use of pedological knowledge
(e.g. taxonomic distance methods). Geostatistical methods could be
used where there is a large amount of input data. Because of the dif-
ficulty in computing variograms for less frequent classes that occur
at isolated locations, interpolating class memberships in geostatis-
tics can be an alternative but can also be cumbersome because the
universal kriging algorithm can become unstable or be excessive in
computation time (Hengl et al., 2007).

Most DSM studies focus on comparing various numerical models
for soil classes with observations from pedons and quantitative
substitutes of the soil state factors. Brungard et al. (2015) compared
11 machine learning algorithms for predicting subgroup classes
of the US Soil Taxonomy using pedon observations at three
geographically distinct areas in the semiarid western USA. They
divided the models into three groups based on model interpretability
and the number of parameters required: simple, moderate and
complex. They concluded that complex models (e.g. support vector
machines and neural networks) were consistently more accurate
than simple (e.g. multinominal logistic regression) or moderately
complex models (e.g. classification tree). Heung et al. (2016)
compared 10 machine learning techniques for mapping soil great
groups and orders, and further confirmed that complex models such
as the support vector machine produced more accurate results than
simpler models (e.g. logistic model or classification trees). Rather
than selecting the best model, there is an option to combine output
from all models and thus combine their strengths. Ensemble models
of continuous soil attributes have been applied in DSM (Malone
et al., 2014), but have not been applied to soil class mapping.

Classification accuracy and mapping infrequent soil classes

The overall accuracy of classification in each study area depends
largely on the number of soil taxonomic classes and the frequency
distribution of pedon observations between taxonomic classes
(many classes with few observations= poor model performance).
The number of soil classes appears related to the inherent variability
of a given landscape (Brungard et al., 2015). Taghizadeh-Mehrjard
et al. (2012) showed that in general classes with lower sampling
frequencies were predicted less accurately because of the difficulty
of separating soil classes in feature space with limited observations.
This problem in machine learning is well known as ‘class imbalance
learning’ (Liu et al., 2006), where some classes are very underrep-
resented compared to others.

To address such imbalanced data, the following approaches can
be applied. (a) Increase the number of observations in classes with
few. A soil surveyor could manually identify potential locations of
rare soil types with a combination of conditioned Latin hypercube
sampling (cLHS) (Minasny & McBratney, 2006) and targeted
sampling or case-based reasoning (Shi et al., 2009). (b) Decrease
the number of taxonomic classes by combining similar classes

and modelling separate sub-areas. Combining similar subgroup
classes could be achieved by using higher taxonomic levels such
as great group or suborder (Jafari et al., 2013) or those based on a
particular soil property (e.g. bedrock contact) (Pahlavan-Rad et al.,
2014). Modelling separate sub-areas is theoretically appealing
because different pedo-geomorphic sub-areas are likely to have
different relations between subgroup classes and environmental
covariates (McBratney et al., 2003). (c) Apply a weighting scheme
to soil classes with few observations during model construction.
However, Stum et al. (2010) found that this method sacrificed
overall accuracy to improve the classification of minority classes.
Although weighting may be intuitively desirable for imbalanced
datasets, for very imbalanced datasets the method does not appear
to be appropriate.

Taxonomic distance

All of the statistical and data-mining models treat the soil class as a
‘label’ and try to minimize the misclassification error. There should
be a taxonomic relation between soil classes at any taxonomic level;
so far, no spatial model has been used to account for these relations
(Minasny & McBratney, 2007). The idea of calculating taxonomic
distances to express the level of similarity and dissimilarity between
different soil taxonomic units was first applied in the 1960s (Hole &
Hironaka, 1960), but only with local data and was of limited scope.
Taxonomic distance was resurrected in the 21st century by Minasny
& McBratney (2007), who incorporated it between soil classes
in a supervised classification routine (such as the decision tree)
into spatial prediction and digital mapping of soil classes. Minasny
et al. (2010) derived taxonomic distances for the WRB Reference
Soil Groups (RSGs) based on the main key soil environmental
properties. They concluded that the mean taxonomic distance
showed a good relation between climate and soil classes, and
appeared to be a useful index of pedodiversity, which combined the
abundance and taxonomic relation between soil groups. Rossiter,
Zeng, and Zhang (2017) showed how adjustments to measures
of conventional classification accuracy can be made, taking into
account taxonomic distance between classes, expressed as class
similarities. These similarities can be weighted by experts, class
hierarchy, numerical taxonomy or a loss function in accuracy
assessments.

DSM versus conventional soil mapping

Some studies have compared the accuracy of soil class mapping
by DSM with conventional methods of soil mapping in terms
of accuracy (Lorenzetti et al., 2015), cost, efficiency (Kempen
et al., 2012; Zeraatpisheh et al., 2017), spatial correspondence
(Bazaglia Filho et al., 2013) and spatial detail (Roecker et al.,
2010).

Lorenzetti et al. (2015) compared a traditional pedological
approach and data mining techniques (neural networks, random
forests, boosted tree, classification and regression tree, and support
vector machine (SVM)) to assess the frequency of WRB reference
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soil groups (RSGs) in the 1:5 000 000 map of Italian soil regions.
They showed that the SVM method was more accurate than the
deterministic pedological approach. Both approaches were more
successful in predicting absence rather than presence of a soil type.

Kempen et al. (2012) compared a universal kriging method and
conventional soil maps created with the representative profile
description and map unit means methods. Similarly, Zeraatpisheh
et al. (2017) compared multinomial logistic regression and random
forest methods with conventional soil survey for producing soil
maps at four taxonomic levels. Both studies concluded that despite
the differences in accuracy being small, DSM produced more
informative and cost-efficient maps than conventional soil mapping.

Bazaglia Filho et al. (2013) compared four maps drawn indepen-
dently by different soil scientists with the same set of information
and a DSM obtained by fuzzy k-means clustering. They concluded
that the average spatial correspondence between the conventional
and DSM maps was similar. However, DSM can eliminate the sub-
jectivity of soil surveyors by using quantifiable parameters.

Because of the reproducibility, easy-to-update workflow pattern,
greater accuracy and cost-effectiveness, coupled with ability to
quantify prediction uncertainties, DSM has become a useful and
practicable approach to soil mapping.

Extracting soil information from soil maps, learning from the
surveyors

Research has indicated that valuable knowledge about the relations
between soil classes and underlying environmental conditions was
embedded in the legacy soil map (Grunwald, 2009; Lagacherie
et al., 2001). For many environmental applications, such as soil
erosion, soil carbon or biodiversity auditing, the level of detail and
accuracy of existing maps is insufficient and funds are lacking to
refine and update these maps by traditional soil survey. Kempen
et al. (2012) showed that DSM can be an efficient alternative
to conventional soil survey for updating a soil map in terms of
accuracy and costs. Collard et al. (2014) showed that accuracy of
the 1:250 000 reconnaissance soil map could be improved just by
utilizing the relation between soil type and covariates calibrated on
the existing legacy soil map. That is because soil mapping units
already correspond to well-identified landscape units, which makes
adding more precise and up-to-date covariates useful for producing
a better map. This study suggested that when good quality maps are
available, this method can be used in particular parts of the world
where reconnaissance soil maps only are available.

The knowledge embedded within soil units delineated by experts
can be partially retrieved as a covariate or a source of calibration
data. However, the extent to which the models can be extrapo-
lated to yield valid predictions can be contentious. An attempt to
identify a relevant area digitally for extrapolation used taxonomic
distance between the local soilscapes and those in a reference area
(Lagacherie et al., 2001). Another modelling method involved the
rule induction process of Bui & Moran (2001), where decision tree
rules were created in training areas where detailed soil maps were
available, and the rules were extrapolated to larger areas where

detailed mapping was unavailable. However, both methods were
used for extrapolation to areas within a given region and have
not been tested on areas that are not geographically continuous
(Minasny & McBratney, 2010). Grinand et al. (2008) tested extrap-
olation with the boosted classification tree and extrapolated regional
soil landscapes from an existing soil map. They observed strong dif-
ferences in accuracy between the training and extrapolated areas.
They also found that sampling intensity did not greatly affect the
accuracy of classification, and spatial context integration with a
mean filtering algorithm increased the accuracy of prediction across
the extrapolated area. However, the predictive capacity of models
remained quite weak when extrapolated to an independent valida-
tion area. This study reiterates that knowledge from soil maps can
be retrieved for extrapolation; however, the uncertainty needs to be
accounted for.

Legacy soil maps typically encompass an assemblage of soil
classes within a single soil polygon (Liu et al., 2016). The geo-
graphic locations of individual soil classes within the polygon
are not specified. More recently, soil map disaggregation studies
for determining the spatial configuration of individual soil classes
include manually based approaches (Bui & Moran, 2001; Nauman
et al., 2012; Thompson et al., 2010) and model-based or data min-
ing procedures (Häring et al., 2012; Nauman & Thompson, 2014).
Odgers et al. (2014) extracted individual soil series or soil class
information from convolved soil map units by the DSMART (dis-
aggregation and harmonization of soil map units through resampled
classification trees) algorithm. The DSMART algorithm can best be
explained as a data mining with repeated resampling algorithm. It
can be quite a powerful algorithm for disaggregating legacy soil
mapping, as demonstrated by Chaney et al. (2016), who disaggre-
gated whole soil maps of the USA at a fine resolution (30 m).

In many places around the world, legacy soil information is diffi-
cult to obtain or can be non-existent. For these areas without detailed
maps or soil observations, it is necessary to extrapolate from other
parts of the world. Bui & Moran (2003) first used existing soil maps
as ‘reference’ areas to represent a range of lithology, topography
and climate, and developed rules for soil distribution and applied
such rules over the corresponding physiographic domain for map-
ping the soils of the Murray-Darling Basin. Mallavan et al. (2010)
further presented the method Homosoil, which assumes homology
of soil-forming factors between a reference area and the region of
interest. This includes climate, physiography and parent materi-
als. They showed the similarity index for homoclime, homolith and
homotop (areas or regions in the world with similar climate, lithol-
ogy and topography) for Harare. A combination of these factors
gives the homosoil similarity index for the area. This novel approach
involves seeking the smallest taxonomic distance of scorpan factors
between the region of interest and other reference areas (with soil
data) in the world. Malone et al. (2016) provided a further overview
of soil homologue together with a real-world application, which
compared different extrapolating functions. Overall, development
and application of the Homosoil approach or other analogues will
become increasingly important for the operational advancement of
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DSM in areas where soil information is non-existent or difficult to
obtain.

Output assessment

There is always a deviation between prediction using DSM
and observation in the real world, and pedologists must know
the quality of predictions to judge their benefit for specific pur-
poses. From this point, an important step in DSM workflow has
been to quantify and summarize the performance of soil prediction
models by calibration or validation, or both. Most researches have
estimated the accuracy of soil class prediction models statistically
using the confusion index or Kappa analysis (Brungard et al., 2015;
Odgers et al., 2011a, 2011b), but have failed to interpret models
in terms of expert knowledge. Balancing pedological interpretation
and pure statistical accuracy would be a way that DSM and pedol-
ogy could benefit each other.

Mapping soil profiles and pedological features

A soil profile is characterized by its horizons and pedological
features. A soil map can be regarded as a planar projection of the
spatial distribution of complexes of soil horizons. Then the map
of the presence and absence of certain soil horizons is superimposed
to carry out soil mapping (Sidorova & Krasilnikov, 2008). There are
several examples of the successful application of DSM to predict
the spatial distribution of soil horizons, such as albic, argillic,
calcic, salic, spodic and fragipan horizons (Thompson et al., 2012).
Soil horizons generally form within parent materials on stable
surfaces (Schaetzl & Anderson, 2005) and soil parent materials
have a considerable effect on pedological and geomorphological
processes; therefore, there has been interest in mapping soil parent
materials using the DSM method (Heung et al., 2014; Lacoste et al.,
2011).

Mapping the thickness of soil horizons

Soil horizon thickness and its variation across a region is an
essential factor for plant growth, environmental issues (soil erosion)
and agricultural production, and plays a crucial role in farm
management, land use or environmental protection (Gastaldi et
al., 2012). The depth and thickness of horizons can be influenced
by geomorphologic positions and topographic attributes, such as
elevation, slope, aspect, and hydrological and erosion processes
(Odeh et al., 1991).

Several studies have mapped the thickness or depth of individual
soil horizons. Tsai et al. (2001) predicted the depth to A, B
and BC horizons using linear soil–landscape regression models
with limited information about the landscape properties, such as
elevation, slope or surface stone content. Sidorova & Krasilnikov
(2008) used an indicator kriging approach to study the spatial
variation of the thickness of O, A, E and B horizons at three sites
in southern and central Karelia, Russia. In peatlands, the interest is

in mapping peat thickness to delineate areas for conservation and
calculating carbon stocks (Rudiyanto et al., 2018).

The topsoil thickness above the argillic horizon is an important
factor in soil quality and productivity. In past research, topsoil
thickness was estimated by fitting empirical regression equations
to single-sensor apparent electrical conductivity data (Saey et al.,
2008). Sudduth et al. (2010) improved topsoil thickness estimates
by combining data from multiple apparent electrical conductivity
sensors, and by inverting a two-layer soil model incorporating
instrument response functions to determine topsoil thickness.

Mapping regolith thickness to bedrock is important for environ-
mental modelling in general and for seismic hazard assessment in
particular. Shafique et al. (2011) developed a generic remote sens-
ing and geophysics-based approach to model regolith thickness for
areas with limited possibility of direct field observation. Wilford &
Thomas (2013) described a method that maps the depth of regolith
(with estimates of mapping uncertainty) in a complex geomorphic
and weathering landscape in South Australia and to the moderately
weathered or saprolite boundary for the whole of Australia (Wil-
ford et al., 2016), which is a considerable advance over mapping
regolith depth by traditionally based regolith–landscape mapping
methods.

However, few have mapped the ensemble horizons as a whole soil
profile. Gastaldi et al. (2012) developed soil–landscape regression
models using terrain attributes, land use and geology to describe
and predict the occurrence and the thickness of several soil horizons
to 1-m depth. They used a combination of logistic regression
with linear regression to model the occurrence of each of the
horizons first and then their thickness, respectively. They found
that prediction quality for individual horizons was not large, which
might be a result of short-scale variation and observation error.
This model revealed good relations between the soil attributes and
the prediction of the occurrence and thickness of each of the soil
horizons. For example, the occurrence and thickness of A horizons
are mostly governed by land use, whereas the B horizons are more
related to soil–landscape processes.

Mapping pedological features

Diagnostic horizons are the combination of specific soil character-
istics that are diagnostic of certain soil classes. Some studies have
focused on mapping diagnostic horizons.

Jafari et al. (2012) compared binary logistic regression as an
indirect approach and multinomial logistic regression as a direct
approach to producing soil class maps in the Zarand region of
southeast Iran. In the indirect prediction method, the occurrence
of relevant diagnostic horizons was mapped first, and subsequently
the indicator maps were combined on a pixel basis by the presence
or absence of diagnostic horizons. With direct prediction, the
probability distribution of the great soil groups was predicted
directly because the dependent variable was the great group itself.
The results showed that soils with better predictions were those
strongly influenced by topographical and geomorphological char-
acteristics, and vice versa. The indirect method gives insight into
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the causes of errors in prediction at the scale of diagnostic horizons,
which helps in the selection of better covariates.

For fine scale mapping, proximal sensing of the soil’s electrical
conductivity appears to be an efficient way to map calcic horizons
(Priori et al., 2013). Priori et al. (2013) concluded that the depth
to the calcic horizon in a vineyard showed a strong correlation with
soil electrical conductivity by combining data from the geoelectrical
sensor with a limited number of soil cores.

Hydromorphic features (Curmi et al., 1998) are the results of
hydrologic processes within the soil and provide evidence of the
magnitude and direction of water movement within the soil. The
presence of hydromorphic soils influences soil–water–plant inter-
actions and partly controls the hydrological response of catchments
(Chaplot et al., 2004) by restricting root growth, storing more
(or less) plant available water and promoting lateral water flow
(Thompson et al., 2012). Chaplot et al. (2004) demonstrated that
the soil hydromorphic index can be mapped accurately using topo-
graphic indices.

Bell et al. (1992) used multivariate discriminant analysis with
topography and geological information to predict drainage classes
spatially. Kravchenko et al. (2002) and Campling et al. (2002)
constructed soil spatial inference models of soil drainage class using
topographical variables. These examples demonstrated that soil
drainage classes can be related to topographic indices, vegetation
indices and soil electrical conductivity.

Mapping soil parent material

Soil parent material is the initial state of the soil system and the
material from which soils are derived (Jenny, 1941). It is responsible
for soil development and soil type; physical and chemical properties
of soils are influenced by parent material. Data for parent materials
are generally derived from existing geological or lithological
maps, and less often from soil maps, soil surveys or airborne
gamma spectrometry (Lacoste et al., 2011). The lack of direct
observations from the land surface and over a large spatial extent
makes the performance of models that predict parent material quite
poor. In terms of information content, maps of parent material
probably contain the least spatially detailed information among all
soil-forming factors (Zhang, Liu, & Song, 2017).

Decision trees have been used for predictive soil parent material
mapping. Lacoste et al. (2011) used multiple additive and regres-
sion tree algorithms to generate a regional soil parent material map.
They concluded that the resultant predictive map had greater accu-
racy than the existing geological map generated using conventional
mapping techniques. Heung et al. (2014) applied the random for-
est model to predict the spatial distribution of soil parent material
using topographic indices and conventional soil survey maps. They
showed that maps produced by the random forest model conformed
strongly overall with soil surveys and highlighted the need for reli-
able training data for the disaggregation of multi-component parent
material polygons.

With the advance of remote sensing techniques, there is progress
in that shortwave infrared surface reflectance or hyperspectral

data can provide direct information on the mineralogy or bare
surface materials (Zhang et al., 2017). Indirect relations can also
be established from other factors such as climate and land surface
temperature. For example, in arid and agricultural environments
where the soil surface is typically exposed, information on parent
material and the soil can be inferred.

Digital mapping of pedological processes

Simonson (1959) developed a process-systems model, describing
the evolution of soil types as a function as follows:

s = f (addition, removal, translocation, transformation) . (4)

1. Addition: new materials deposited by wind or water add to the
soil, such as decomposing vegetation, organic matter and dust.

2. Removal: soil particles (sand, silt, clay and organic matter) or
chemical compounds can be eroded, leached or harvested from
the soil through the movement of wind or water.

3. Transformation: primary minerals into secondary minerals, for
example, the formation of clay minerals or transformation of
coarse organic matter into decay-resistant organic compounds
(humus).

4. Translocation: movement of soil organic or mineral constituents
within the profile or between horizons (Figure 4).

Many DSM studies have generated useful information about
pedogenic processes, addition (e.g. aeolian dust deposition),
removal (e.g. soil erosion), transformation (e.g. weathering of
primary minerals, formation of clay minerals and calcification) and
translocation (e.g. clay illuviation) by remote sensing, proximal
sensing and machine leaning techniques. For example, Jang et al.
(2016) used a portable X-ray fluorescence spectrometer (pXRF) to
measure simultaneously the geochemical composition (Ca, Fe, Ti
and Zr) of soils that could be useful for pedological studies. They
identified Ca-rich parent materials (limestone) based on Ca concen-
tration and areas of texture-contrast soils or soils with accumulation
of clays in the B horizon based on Fe content. In addition, they
calculated a soil weathering index using elemental concentrations
(i.e. Ti and Zr) to explore the history of soil formation.

Gamma-ray spectrometry has proved to be a useful tool for soil
mapping, given a sound understanding of the process to infer the
detected signals (Stahr et al., 2013). It is a passive remote sensing
technique that measures the concentration of three radioelements,
potassium (K), thorium (Th) and uranium (U) at the Earth’s surface.
Soil-forming processes have a different effect on the dilution or
accumulation of these radioelements, resulting in a differentiation in
the gamma-ray signal. The following sections explain the applica-
tion of gamma-ray spectrometry during the pedological processes.

Addition

The deposition and accumulation of aeolian dust is one type
of pedogenetic addition and can be a critical component of soil
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Figure 4 The removal, addition, transformation and translocation pro-
cesses operating in soils (redrawn from Wilford & Minty, 2007).

development. A wide range of pedological, geochemical and geo-
physical analyses have been applied to identify and characterize
aeolian dust inputs (Gatehouse et al., 2001). However, most of
these contributions often rely on specialized equipment and oper-
ator expertise, but do not indicate the spatial distribution of dust
deposits across a landscape (Cattle et al., 2003).

From different K, U and Th-bearing mineral suites, airborne
gamma-ray spectrometry allows one to distinguish aeolian sedi-
ments from the underlying rock or a soil profile that has developed
in situ. Cattle et al. (2003) identified aeolian dust in the topsoils
of the Hillston district in western New South Wales using airborne
with follow-up ground-based radiometric data and established a
variable relation between large K signatures and apparent topsoil
dust accumulations. However, in areas influenced by fluvial sedi-
ments, the radiometric signature was unable to indicate topsoil dust
content.

Organic matter accumulation is another form of addition. Organic
matter can absorb K; therefore, additional organic matter in the soil
will dilute the overall gamma-ray signal. Whether this dilution is
detectable depends on the degree of accumulation. According to
Stahr et al. (2013), terrestrial arable soils with small organic matter
concentrations (i.e. <2 mass%) cannot be detected, whereas thick
organic layers on topsoil (O horizon) can be.

Removal

Soil erosion has been a major issue around the world. Gully
erosion can have devastating effects on catchments, particularly
those involved in agriculture (Valentin et al., 2005). Kuhnert et
al. (2010) used the random forest model to predict gully density,
rate of gully erosion and its associated prediction error across a
catchment using a suite of environmental variables as input to the
model. However, their results cast doubt on the predictive ability
of models of sediment transport that use gully erosion, where the

error is estimated to be large. The consequence of this is that better
modelling results will come only from improving the on-ground
information on gully density. Rahmati et al. (2017) compared the
performance of machine learning models to predict the occurrence
of gully erosion in a watershed in Iran. They found that these models
can be used in other gully erosion studies because they performed
well both in the degree of fitting and in predictive performance.
Hughes et al. (2001) found that land use, soil texture, temperature
seasonality and relief are the most useful predictors for gullying
across the continent, whereas lithology, mean annual rainfall, slope
and hillslope length are also important regionally.

Transformation

Wilford & Minty (2007) illustrated that airborne gamma-ray spec-
trometry relates to the mineralogy and geochemistry of the bedrock
and weathered materials (e.g. soils, saprolite, alluvial and collu-
vial sediments). Thorium and U concentrations often increase as K
decreases during bedrock weathering and soil formation. They iden-
tified highly leached soils and deeply weathered bedrock and thin
soils over fresh bedrock using a residual modelling technique that
combined geological map units with the gamma-ray imagery based
on the preferential loss of K-bearing minerals as the rock weathered.
Wilford (2012) generated a weathering intensity map of the Aus-
tralian continent based on the multivariate analysis of gamma-ray
and terrain attributes. The map, therefore, has broad application in
understanding weathering and geomorphic processes across a range
of spatial and temporal landscape scales.

Calcium carbonate content is a key component of the regolith,
particularly in arid and semiarid regions. It influences soil prop-
erties, is an important terrestrial carbon store and is used in
mineral exploration. Wilford et al. (2015) developed a decision tree
approach to map soil calcium carbonate abundance at the continen-
tal scale with inductive insight into the calcification process. They
produced a prediction of soil calcium carbonate concentration in
the upper regolith with associated degrees of model uncertainty and
resolved the first-order controlling factors of soil calcium carbonate
distribution over both depositional and erosional landscapes. This
approach provides a better understanding of the environmental
controls on soil carbonate formation and preservation in the land-
scape, which address inconsistencies and gaps in the existing
national maps of soil carbonate and can be used to model and map
geochemical and mineralogical properties in the upper regolith.

Translocation

The clay illuviation process represents the mechanical migration
of clay from the surface horizons to the profile’s deep horizons.
Translocation of high-activity clay with a substantial concentration
of K most probably leads to a decrease in the K signal in the topsoil
(A and E horizons) and an increase in the enriched horizon (Bt).
Stahr et al. (2013) illustrated different potassium surface and soil
profile gamma-ray signals of soils with clay illuviation in Bor Krai
village, northern Thailand, and concluded that the reference soil
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groups for high-activity clays (Alisol and Luvisol) showed a clear
depth gradient. The incremental increase with depth was linear. In
this case, gamma-ray spectrometry can be useful for mapping clay
eluviation and illuviation, especially based on K signals.

Pedological knowledge and DSM

Walter et al. (2006) distinguished five broad domains where
knowledge on soil properties and processes can be useful for spatial
predictions or digital soil mapping.

1. Relative distribution of soil entities (profiles, horizons) within
the landscape.

2. Identification of soil-forming factors.
3. Correlation between soil properties.
4. Spatial structures of soil properties.
5. Temporal dynamic of physical and biochemical processes.

Such pedological knowledge should be incorporated into predic-
tive models to increase prediction efficiency and to link soil maps
to dynamic modelling (Walter et al., 2006). Incorporating pedo-
logic knowledge into predictive models is still a challenge because
complex interrelations between soil-forming processes are not easy
to capture and quantify. However, it is attractive because such
incorporation could provide maps that represent the soil physical,
chemical and biological processes better and bring benefits for both
DSM and process modelling (Angelini et al., 2016). Researchers
have focused on the use of narrative data in DSM, the description
and prediction of variation of soil properties down the profile and
acquisition of new insights, hypotheses and further questions.

Narratives of pedogenesis

In conventional soil survey, the relations between soil proper-
ties and more readily observed environmental features have been
expressed as narratives. Narratives of pedogenesis and soil distri-
bution may be translated into a form that takes advantage of digital
technology and remote sensing to reach the full potential of digital
soil mapping, in particular when survey extents are large, data are
sparse and resources are limited.

Local and regional models of pedogenesis are always qualitative
and expressed through narratives, diagrams and sets of rules.
McKenzie & Gallant (2006) used the system by Butler (1982) to
develop a local model of pedogenesis, first as a narrative, which
emphasizes landscape history, provenance of soil parent materials
and pedogenic process, and then expressed as parsimonious and
easy to update rules for digital soil mapping. The rules rely on
just a few terrain and geophysical variables. This approach is
explicit and repeatable and encourages improvements to predictions
when and where they are needed. However, its prediction power is
limited as discussed in the covariate selection section, where human
knowledge can sometimes be biased and unable to comprehend the
utility of a range of covariates.

Depth functions

Different natural and anthropogenic soil-forming processes result
in different soils with different soil property depth profiles. Several
attempts have been made to use pedometric methods to map
the three-dimensional variation of soil properties using depth
functions (Kempen et al., 2011; Meersmans et al., 2009).

Minasny et al. (2016) identified seven typologies of soil depth
functions that describe soil property change with depth relating to
soil-forming processes: uniform, gradational, wetting front, peak,
minima–maxima (minmax), exponential and abrupt (Figure 5).
Although the depth functions may or may not reflect soil horizon
boundaries, they can infer soil processes, as in the examples below.

1. The exponential or power function is the most widely used soil
depth function; it is mainly used to describe the decline of soil
organic matter or carbon content with depth (largest in the A
horizon and less in the subsequent horizons). The model assumes
the distribution of organic matter added to soil by plant litter or
decaying roots. The function can also be used to describe soil
development, where the rate of soil weathering decreases with
increasing soil thickness (Stockmann et al., 2014).

2. The movement of water through a soil profile creates wetting
front-type depth functions. This function has been found in
weathering profile results from diffusion processes (Kirkby,
1985), depletion of leachable elements or minerals (Brantley et
al., 2008), depth distribution of soil horizons (Beaudette et al.,
2016) and gleyed horizons (Leblanc et al., 2016).

3. Peak functions can show accumulation (maxima) of some
soil properties such as clay content with depth because of
eluviation and illuviation processes, or in situ formation or
discontinuity in soil parent materials. Peak functions can also
indicate compaction and anthropogenic influences can create
variation such as multiple peaks (Minasny, 2012; Myers et al.,
2011)

Meersmans et al. (2009) considered anthropogenic influence
(tillage) on soil formation and profile morphology for modelling
the vertical distribution of soil organic carbon (SOC) using an expo-
nential decay function with a constant SOC density to tillage depth.
They concluded that SOC stock near the surface is determined by
land use and soil type, whereas SOC near the bottom of the soil
profile depends only on soil type (i.e. texture and drainage).

Kempen et al. (2011) mapped the three-dimensional distribution
of soil properties by combining pedologically defined soil depth
functions with geostatistical modelling. Five depth functions or
horizon building blocks were defined, and for each soil type, the
structure of the depth function was obtained by stacking a subset
of model horizons. The parameters of the depth function for each
of the horizons were interpolated by universal kriging with auto-
and cross-covariance models. The depth functions of four peat
soils (P, mP, PY and mPY) and two mineral soils (ES and PZ)
are shown in Figure 6. This approach is useful in areas where soil
formation results from distinct discrete anthropogenic or geologic
disturbances.
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Uniform Gradational Wetting Front Peak MinMax Exponential Abrupt

Figure 5 General typologies of depth functions (redrawn from Minasny et al., 2016).

Structural equation modelling

Angelini et al. (2016) introduced a statistical technique known as
structural equation modelling (SEM) (Grace & Keeley, 2006) to
integrate knowledge about interrelations between soil properties
and predict these properties simultaneously. They identified the
main soil forming processes in a 22 900 km2 region in the Argen-
tinian Pampas and assigned the main soil properties affected to
each process. Based on this, they defined a conceptual model that
summarizes the relations between soil-forming processes, control-
ling factors and affected soil properties (Figure 7), converted it
to an SEM graphical model and then applied the SEM to predict
seven key soil properties. Although the accuracy of the maps was
poor based on cross-validation and independent validation, they
illustrated that SEM can improve the consistency between multiple
predicted soil properties and bridge the gap between empirical
and mechanistic methods for soil–landscape modelling. Moreover,
model error and measurement error can be distinguished explicitly
by SEM.

Because of the many soil processes operating within the soil
profile, Angelini et al. (2017) tested SEM for multilayer and
multivariate soil mapping. They applied SEM to the model and
predicted the lateral and vertical distribution of the cation exchange
capacity (CEC), organic carbon (OC) and clay content of three
major soil horizons, A, B and C in the same Argentinian Pampas
area. They concluded that SEM is useful for predicting several soil
properties simultaneously for multiple horizons.

Knowledge discovery from DSM

Knowing the correlation between field soil observations and envi-
ronmental covariates does not necessarily indicate direct causation;
however, it does help to stimulate ideas, gain new insights
and hypotheses, and formulate further questions for research
as shown in Figure 8. In other words, the occurrence of patterns

from the soil and covariate relations could indicate knowledge dis-
covery (Bui et al., 2014). Knowledge discovery from DSM is dis-
cussed further in Henderson et al. (2005) and Scull et al. (2005).

Bui et al. (2006, 2009) found that SOC in Australian soils
responded to vegetation, biomass, soil moisture and temperature
patterns. The Australian continental modelling revealed a hierarchy
of interacting variables. Climate was the most important factor at
a continental scale, with different climatic variables dominating in
different regions. The results support Dokuchaev’s zonal soils the-
ory, which emphasized climate. Lithology is important in defining
broad-scale spatial patterns of soil properties, whereas topography
controls shorter-range variation of soil properties (Bui et al., 2006).
Based on these findings, Bui et al. (2014) investigated whether there
were similar patterns in soil chemistry and plant and microbial com-
munities. They demonstrated that soil salinity and pH are important
filters for plant species richness.

The regolith thickness prediction of Wilford and Thomas (2013)
in the ‘Mapping the thickness of soil horizons’ section determined
that geology and weathering intensity are primary controls on
regolith thickness and that terrain is a secondary, more local,
control. Bui (2016) pointed out that these important results showed
that an emphasis on catenary relations (i.e., using only terrain
variables to account for soil patterns) would be misguided for large
areas. Also, the results challenged the view that Australia’s current
climate has little relevance to soil properties at present because of
the age of Australian landscapes (Taylor, 1983).

For the soil calcium carbonate distribution estimated by
Wilford et al. (2015) and discussed in the ‘Digitally map-
ping pedological processes’ section, parent material, climate,
specifically rainfall, temperature and seasonality are regional to
national-scale controls, whereas topography, parent material and
carbonate-rich groundwater discharge sites are local-scale con-
trols. In another example in this section, Kuhnert et al. (2010)
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Figure 6 Predicted depth functions for six soil types at one location. The depth functions of the other four soil types that had zero probability are not shown
here (adapted from Kempen et al., 2011). SOM, soil organic matter.

concluded that lithology, isothermality and annual mean mois-
ture index are the most important predictors of gullying in a
semiarid northern Australian river basin, whereas mean annual
rainfall and slope are key factors in the Murray-Darling Basin
(Hughes & Prosser, 2012).

Mechanistic pedological models in DSM

The DSM framework meets the increasing need for quantitative
soil information, but is of limited use in situations of complex
terrain where observations cannot be obtained. Moreover, the DSM
framework expresses soil variation in spatial terms without the time
dimension and excludes knowledge of the dynamic relations and
mechanism between soil properties and landscape.

Researchers have found that there are strong links between the
soils and geomorphology of the landform where they occur (Weliv-
itiya et al., 2016). Landscape evolution models try to model soil
development as governed by weathering, erosion or deposition. The
dynamics of changes in soil attributes can also have a positive effect
on the long-term processes (landform evolution) or time-varying
conditions (e.g. climate change) (Cohen et al., 2010). For example,
soil texture, soil organic carbon and surface stone cover can affect
landscape evolution dynamics and the spatial variation and mag-
nitude of erosion (Minasny et al., 2015). In an eroding landscape,
the bedrock–saprolite contact is closer to the surface, which in turn
accelerates soil formation (Heimsath et al., 1997) from bioturba-
tion, uprooting of bedrock material (Phillips & Marion, 2006), more
intense chemical weathering and more active physical weathering
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Figure 7 Conceptual model depicting relations between and across soil forming and controlling processes. Sat.A, base saturation of A horizon; tb.A, total
bases of A horizon; bt, clay ratio B/A horizons; oc.A, soil organic carbon of A horizon; esp.A and esp.B, exchangeable sodium percentage of A and B horizons,
respectively; is.CaCO3, presence of calcium carbonate; is.hydro, presence of hydromorphic conditions; is.E, presence of E horizon; thick. A, thickness of A
horizon (based on Angelini et al., 2016).

(Anderson et al., 2013). Process-based soil–landscape evolution
models have been developed to understand the spatiotemporal vari-
ation of soil properties on a dynamic landform (e.g., Lebedeva et al.
(2010)).

Some studies of soil–landscape modelling work with a hypothet-
ical landscape based on an assumption of a steady-state condition,
and validation of soil–landscape models with limited field data
(Braun et al., 2016; Minasny et al., 2015). Willgoose & Sharmeen
(2006) developed a physically based model named ARMOUR to
simulate spatial and temporal changes of armouring (the process of
surface coarsening) and weathering processes on a one-dimensional
hillslope. By simplifying ARMOUR, Cohen et al. (2009) refor-
mulated it as a state-space matrix model named mARM that
can simulate complex hillslope soil surface particle-size evolu-
tion. Extending the mARM model, Cohen et al. (2010) developed

mARM3D, which can model soil profile particle-size distribution
at a large spatial extent. The SSSPAM (Welivitiya et al., 2016)
generalized the formulation of mARM3D and extended the previ-
ous research to test more general conditions. Other models such
as MILESD (Vanwalleghem et al., 2013) and LORICA (Temme &
Vanwalleghem, 2016) incorporated various chemical and biologi-
cal processes in the simulation. The MILESD is formulated on the
rudimentary framework of landscape-scale models for soil redis-
tribution (Minasny & McBratney, 1999; Minasny & McBratney,
2001) and the pedon-scale soil formation model (Salvador-Blanes
et al., 2007). The LORICA modifies the three-layers module to rep-
resent the soil profile in MILEDS to incorporate additional layers
and combines with the landform evolution model LAPSUS.

Ideally, we can use such soil–landscape models to simulate
soil development in an area. However, little or no research has
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Figure 8 Generic workflow illustrating how
the expert uses knowledge of the domains to
define the study, control data selection and
evaluate results (redrawn from Bui, 2016).

been carried out regarding use of such models. Bonfatti et al.
(2018) estimated soil thickness and its variation over time using
soil production function (SPF) and a landscape evolution model
(LEM). The SPF calculated the rate of soil production and the
LEM calculated erosion and deposition patterns. They observed
that variation in soil thickness largely depended on the landscape
position, and soil thickness was predicted more accurately in the
upland areas, with a trend towards an equilibrium condition, than in
the valley bottom areas without a trend towards equilibrium. These
results indicate that the assumption of a steady-state condition might
not hold over long timescales.

Runge (1973) suggested that soil formation is analogous to
energy fluxes and developed ‘energy models,’ which are some-
what of a hybrid between the state-factor model of Jenny (1941)
and process-systems model of Simonson (1959, 1978). The model
emphasized two intensity factors, water available for leaching,
organic matter production and time. Although Runge (1973)
defined a qualitative model, Rasmussen et al. (2005) developed a
quantitative pedogenic energy model that converts influxes of pre-
cipitation and organic matter (approximated by NPP) to soils on the
basis of their contributions to an energy balance.

Linking models of pedoscale mechanics and soilscape would
be advantageous to soil classification. According to Finke (2012),
developing and applying three-dimensional simulation models of
soil behaviour could help soil classification because the present
classifications are based on morphological descriptions. However,
such ideas are currently embryonic because no simulation model
can presently simulate properties directly, such as soil colour, type
or structure (Brevik et al., 2016).

Ma et al. (2019) used the soil–landscape model SSSPAM for
predicting the spatial pattern and evolution of sand content for
an area in the Hunter Valley, New South Wales, Australia. In this
way, they attempted to improve the pedological knowledge in DSM
techniques. They also tested the possibility of a process-based
model used as a covariate in DSM, thus combining the empirical
spatial data with pedological knowledge to predict soils in space
and time.

The ultimate aim is to simulate soil distribution across the
landscape with mechanistic models, rather than using empirical
models, but there are still many issues in the use of such models,
such as the following.

1. Soil is treated as a residual material, and soil formation is limited
by weathering processes and soil redistribution by geomorphic
processes.

2. A steady-state assumption is applied in many landscape evo-
lution models. This should be questioned because of lack of
equilibrium in the real landscape (Phillips, 2007).

3. On the equilibrium basis, the implicit initial condition and
default process properties are used based on limited experiments
and field observations, such as size-selective sediment transport
and deposition.

4. Process coverage is limited; that is, only rare soil–landscape
evolution models incorporate carbon dynamics, and most soil
carbon models do not take the landscape component into
account.

5. The simulation process is incomplete without the feedback
effects of vegetation, biota or humans, or without coupling with
other models such as climate or vegetation.

6. Computation of certain process representations is time con-
suming and the adaptation of the model code for use in
high-performance computing is often complex.

7. Most calibration data represent the present-day situation and
only a limited amount of data is available to represent geograph-
ical and temporal domains.

These challenges of model incompleteness, computational effi-
ciency, and model calibration and validation issues should be
a focus of future research. For example, the research required
includes the following.

• Optimize the coupled four-dimensional soil–landscape evolu-
tion model to be available in a global context by converting soil
formation into external forcings (boundary conditions).

• Balance increased process coverage and reduced computation
complexity.

• Explicit representation of certain processes.
• Link with mineral equilibria models, energy and mass balance

(thermodymics) models.
• Increase sensitivity analysis, and more substantive model cali-

bration and validation.
• Combine with DSM. For example, combining the empirical

spatial data with the mechanical process-based model to predict
soils in space and time.
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Conclusions

The creation of synergies between pedology and DSM has been
developed by more accessible mathematical and statistical methods.
A primary link between pedology and DSM is that pedogenesis
and soil–landscape processes strongly influence spatial variation
in soil properties. Here, we summarize some major findings for
developments in DSM and pedology in this review.

1. Soil classes can be mapped accurately using DSM, especially
when considering selection of covariates, complex models,
taxonomic distance and depth functions of soil properties.

2. Information can be extracted from soil maps by updating or
refining, extrapolating and disaggregating when there is only
soil map information available. The Homosoil method can be
applied where legacy soil information is difficult to obtain or
even non-existent.

3. Occurrence and thickness of soil horizons, whole soil profile and
soil parent material can be predicted successfully using DSM.

4. DSM can provide useful information about pedogenic processes,
addition (aeolian dust deposition), removal (soil erosion),
transformation (weathering of primary minerals, formation of
clay minerals and calcification) and translocation (clay illuvia-
tion). Currently these processes have been mapped individually,
but future work should focus on mapping all four processes
simultaneously.

5. Pedological knowledge can be incorporated into DSM, but DSM
can also lead to knowledge discovery.

6. There is a potential to use process-based soil–landscape evolu-
tion models in DSM.

Based on these important findings, it is clear that DSM is not
solely about making maps. It can help in forming new hypotheses
and gaining new insights into soil and soil processes. The combi-
nation of data-driven and knowledge-based methods promotes even
greater interactions between pedology and DSM.
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