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A B S T R A C T

Soil thickness is not easily measured in situ, making it also a challenging variable to reliably map. This study
improves on previous digital mapping of soil thickness across Australia using an approach suited to the con-
tinent’s unique pedo-geomorphic history. Leveraging three large, in situ observation datasets and a wide range of
spatial environmental variables, we developed three models depicting rock outcrops, intermediate and deep soils
respectively. Our modelling approach addressed right-censored data, which is a common attribute of soil
thickness data, and we applied an iterative, data re-sampling framework to quantify prediction uncertainties. We
integrated the three models to create soil thickness maps and associated products of soil thickness exceedance
probabilities. Using data excluded from model calibrations, we achieved an overall accuracy of 99% for the
binary outcome rock outcrops model, and 85% for the binary outcome deep soils model. Modelling soil thickness
of shallow to deep soils resulted in a concordance coefficient of 0.77. Of all the environmental variables con-
sidered in this study, those associated with climate data (including topo-climate) were consistently the most
often used and important. We associate this finding with the direct and indirect effects of climate on biota and
weathering of parental materials along with other factors driving spatial heterogeneity in soil thickness across
Australia. While the products generated by this research are not without error, the overall pattern of soil
thickness is consistent with previous observations from historical soil surveys across Australia and the results are
demonstrably more skilful than previous digital soil mapping efforts.

1. Introduction

Soil thickness, as defined in Australia (National Committee on Soil
and Terrain, 2009), is the length of distance from the soil surface to
para-lithic or lithic contact (i.e. the A and B soil horizons). The term is
often used synonymously with soil depth. Maps of soil thickness have a
wide range of uses as inputs to land capability and crop/species suit-
ability assessments, in models of biophysical dynamics such as carbon
and water storage and balance, or infrastructure planning, to name just
a few. However, accurate mapping of soil thickness is fraught with
numerous technical difficulties. Besides a dearth of point observation
data relative to other measurable soil variables such as pH or total soil
carbon (Searle, 2015), the most significant technical difficulty is the
problem of appropriately handling right-censored data (Chen et al.,
2019). Here, right-censored data arises when the observed soil thick-
ness does not correspond to the actual soil thickness. This happens for
several reasons: 1) soil sampling often does not involve the need to
determine depth to lithic contact; 2) in the absence of exposed soil pits

or road cuttings, soil sampling to depth is costly and requires specia-
lised equipment; 3) even with specialist equipment there is a maximum
feasible sampling depth. These sampling constraints manifest in legacy
data bases where for example in Australia we find 69% of soil site
observations do not go beyond 1.5 m and 62% of soil site observations
that do not have C or R type horizon descriptors. These descriptors are
used in Australia to describe layers below the soil of consolidated or
unconsolidated material, usually partially weathered, little affected by
pedogenic processes, and either like or unlike the material from which
the soil was presumably formed (National Committee on Soil and
Terrain, 2009).

Compared to other parts of the world, Australian soils are relatively
deep because of the age and weathering processes these landscapes
have undergone (Young and Young, 2001). For example, some alluvial
floodplain soils west of the Australian Great Dividing Range in the
Riverina region (eastern Australia) have been measured at more than
20 m thick (Chen, 1997). While similar observations of soil thickness
are known anecdotally in numerous other places, in different settings
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and contexts, this knowledge is not well represented in digital soil
mapping of soil thickness across Australia (Viscarra Rossel et al., 2014),
which predicts a maximum thickness of 1.84 m. The same model pre-
dicts a minimum soil thickness of 0.1 m (mean of 0.82). In later work,
Wilford et al. (2016) presented work on mapping the regolith thickness
across Australia. While both the Viscarra Rossel et al. (2014) and
Wilford et al. (2016) approaches were largely framed around machine
learning predictive modelling approaches, the latter approach in-
corporated more data and of the type to better distinguish shallow and
deep profiles, for example from rock outcrop observations and bore
hole data from the National Groundwater Information System (NGIS)
database, which have also been used in global soil thickness digital
mapping models in Shangguan et al. (2017). However, what is difficult
to disentangle from regolith thickness mapping is the relative thick-
nesses of the two constituent layers: the solum (i.e. the A and B hor-
izons) and the saprolite. Without distinguishing these layers, it is dif-
ficult to draw meaningful comparisons between the Wilford et al.
(2016) and the Viscarra Rossel et al. (2014) maps. Biological systems
interact predominantly within the solum, which provides a foundation
for agricultural productivity and ecosystem diversity. Given this im-
portance of the solum, there is a clear need to firm up our under-
standing of its variation thickness across the Australian landscape,
using the best available data, knowledge and tools.

The spatial prediction of soil thickness has received considerable
attention because of its importance for quantifying various soil func-
tions. Mechanistic based approaches have included those described by
Minasny and McBratney (1999), McKenzie et al. (2003) and Pelletier
and Rasmussen (2009). In these studies, mechanistic understanding of
weathering and sediment transport processes, including interaction
with topographic position is used to estimate soil thickness. The para-
metrisation of these models is informed by empirical observations, but
this approach cannot be generalised across large spatial extents. Im-
plied assumptions about how the model will operate apply to the setting
in which it was calibrated, outside of which extrapolations can generate
spurious predictions.

Empirical approaches include those from Odeh et al. (1991) and
Moore et al. (1993) among others of more recent times and provide a
way of dealing with heterogeneity. This is because explicit relationships
between observations (target variables) and associated predictor vari-
ables are defined via some model structure that could range from being
relatively simple (such as multiple linear regression) to rather complex
(such as machine learning or neural network models). These models are
good at extracting relationships from vast amounts of diverse predictor
variables. This can be beneficial for explorative work when considering
lesser known relationships and incorporating complex statistical re-
lationships that mechanistic based models are unable to capture. Pre-
suming the data with which the models are fitted are representative of
the environment to be mapped, successful outcomes are to be expected
if the relationships between target and predictor variables are parti-
cularly strong. Such models however are not immune to the model
extensibility issue that mechanistic based models suffer from, but this
could potentially be overcome by increasing the number and diversity
of data in the model, as well as calibrating the model to the intended
spatial geographical extent (assuming there is sufficient data within the
newly defined extent of course).

In any case, while one could potentially entertain any number or
type of predictor variables, it is helpful, particularly for spatial mod-
elling of soil phenomena, to have an underlying soil-landscape concept
with which to frame and constrain the empirical models. This is es-
tablished through the SCORPAN function introduced in McBratney
et al. (2003) which borrows from earlier established concepts (namely
Jenny’s CLORPT function) of soil-landscape relationships. That is, soil
at a particular location is the result of various chemical and physical
processes due to where it is in the landscape, affected by the prevailing
climate (C), the biology such as vegetation and land management im-
print (O), relief (R), underlying parent material (P) and its age (T). As

well as these factors, McBratney et al. (2003) contend that we can also
predict soil properties from other soil phenomena, and that there is a
spatial context to soil formation, for example distance to a certain
landmark or geographical feature. These additional factors are the S
and N factors of the SCORPAN function. What sets SCORPAN apart is its
purely empirical nature and that it can be easily melded to exploit
capability in modelling approaches and digital environmental data
availability. It is the SCORPAN function that provides the framework
and basis for what is commonly called digital soil mapping (DSM).
Spatial modelling of soil thickness is in the purview of DSM. This is
useful because through using spatially exhaustive environmental vari-
ables such as from digital elevation models, remote sensing data, geo-
logical information and other environmental data, together with soil
observations, one can derive a soil-landscape relationship under-
standing via this quantitative model framework. For soil thickness
mapping this ultimately enables the ability to bring together as much
environmental information as feasibly possible, and then using (espe-
cially in more recent times) quite complex model structures to get a
comprehensive picture of its spatial variability. This is demonstrated in
the earlier cited studies by Viscarra Rossel et al. (2015), Wilford et al.
(2016) and Shangguan et al. (2017). Soon we may expect to see a
coupling of mechanistic and empirical methods such as that described
in Ma et al. (2019) as a way of exploiting and integrating the benefits of
both approaches.

DSM-based studies that focus on addressing the right-censored data
issue are relatively scarce. Forays into this space have been undertaken
by Kempen et al. (2015) for predicting soil peat thickness in the
Netherlands. They used simulation wherein, for every iteration, a cer-
tain amount of thickness was added to the right-censored data by
drawing a value from a beta distribution with given parameters. The
simulated data was combined with interval data (similarly subjected to
a simulation sampling approach) and actual measured thickness data to
generate a data series that was then combined to derive probabilistic
estimates of peat thickness. Rather than drawing from a beta distribu-
tion, Lacoste et al. (2016) simply treated right-censored data by adding
30 cm to those affected profiles before implementing their spatial
model framework. Formalised model structures for dealing with right-
censored data fall predominately into the survival analysis branch of
statistics. As indicated in Chen et al. (2019), survival analysis is widely
used in medical and engineering research where one application of
these models is for analysing the expected duration of time until one or
more events happen, such as death in biological organisms or failure in
mechanical systems. In their study, Chen et al. (2019) reviewed several
models that can be used in survival analysis including the Random
Survival Forest model (RSF, Ishwaran et al., 2008) which they used for
probabilistic mapping of soil thickness across France. This proved a
successful approach and echoed sentiments from Styc and Lagacherie
(2016) about such models being useful; they are objective, specific and
a necessary addition to the suite of modelling approaches used for DSM.

Our own forays with RSF were not hugely successful. This was
mainly because we had difficulty constructing and sourcing a RSF
computational workflow to fit a model with our to-be-described
~150,000 observations. Secondly, even negating the presence of right
censored data (in order to fulfil an explorative exercise) with our data
mix and just trying to model soil thickness using a machine learning
model structure where we can relax many assumptions around things
like distributions, we found such models incapable of generating a
multimodal distribution of the type observed when one compiles a
database of soil thickness observations. On balance after consideration
of the sorts and types of data at our disposal, a mechanistic based model
was not appropriate. Instead, the empirical approach was determined as
most suitable, but something more tailored to the Australian soil con-
text rather than using a standard modelling approach. The present
study describes the process we ultimately undertook to adequately
model the spatial distribution of deep soils, rock outcrops, skeletal soils
and everything in-between. Our approach integrates observational data
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from different sources and implements a piecewise or multi-model ap-
proach where separate models estimate shallow, intermediate and deep
soils independently. These models are integrated via a basic gating
routine to generate continental probabilistic maps of soil thickness. We
propose that this approach is well suited for the Australian context.
Here we describe the number of processing steps undertaken to prepare
the data for use and the spatial modelling framework applied.

2. Materials and methods

This study encompasses the continent of Australia, where there is a
need to consistently map the spatial variation in soil thickness. We used

publicly available datasets and applied integrated modelling and be-
spoke computational workflows to generate a final product (as shown
in Fig. 1).

2.1. Datasets

2.1.1. Observational data
We harmonised three point observation datasets in this study

(Fig. 2).

1. The Australian National Soil Site Collation (NSSC, Searle, 2015).
The database has information for 277,943 soil profile observations,

Fig. 1. Summarised workflow of methodological framework for digital mapping of soil thickness across Australia.
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describing 1,019,823 horizons. These data are distributed across
Australia, with the compilation being the result of collaboration
between State and National agencies, and universities.

2. National Groundwater Information System (NGIS) database of bore
hole data. This spatial database holds nationally consistent in-
formation about bores that were drilled as part of the Bore
Construction Licensing Framework (http://www.bom.gov.au/
water/groundwater/ngis/). The database contains 357,834 drill
hole locations with associated lithology, bore construction and hy-
drostratigraphic records.

3. The Rock Properties database provided by Geoscience Australia give
the locations of sampled rock outcrops across Australia (http://
www.ga.gov.au/scientific-topics/disciplines/geophysics/rock-
properties). Filtering this dataset on the sample types of “outcrop
sample” resulted in 14,616 rock outcrop locations within areas
where relief> 300 m.

2.1.2. Environmental covariate data
Most covariate data are the same as used by Viscarra Rossel et al.

(2015) in generating the Soil Landscape of Australia (SLGA) digital soil
information infrastructure. Each variable is described in Table 1 of the
supplementary information. For consistency with end user require-
ments, we substituted the climatic data used in Viscarra Rossel et al.
(2015) with a new suite of surfaces and associated solar energy and
topo-climatic information. Climate surfaces for the present study were
based on the ANUCLIM 6.1 (Xu and Hutchinson, 2011) 30-year average
climate surfaces for Australia (1976–2005), with elevational lapse rate

correction applied over the 3 arc second (~90 m) processed and hy-
drologically corrected STRM digital elevation model (DEM, Gallant
et al. (2012)). Radiative correction derived from the same DEM was
applied to radiation and maximum temperature before calculation of
evaporation, using the CSIRO TerraFormer software (Harwood et al.
2014). Summary statistics for each variable were calculated including
variables described in Harwood et al (2014) and Williams et al. (2012).
Solar energy and topo-climatic adjusted variables were derived using
the same DEM and computed with the SRAD model (Wilson and
Gallant, 2000). In total 47 ‘climatic’ surfaces were compiled for this
study. Covariates related to relief were derived from the same DEM. In
total, 16 primary and secondary terrain variables were available. Cov-
ariates related to organisms were derived from remote sensing plat-
forms including the AVHRR, MODIS and Landsat satellite platforms and
include vegetation indices with themes such as persistent vegetation,
time series fractional vegetation cover (and their statistical moments)
and FPAR (fraction of photosynthetically active radiation). A total of 21
‘Organism’ layers were compiled for this study. Parent material and
associated soil covariates included coverages of the gamma radiometric
data regions of interest (thorium, potassium and uranium), a material
weathering index (Wilford, 2012), and maps of soil secondary clays
(kaolinite, illite, smectite) from Viscarra Rossel (2011). In total 14
layers of the parent material and soil theme were compiled. If not al-
ready done so, each of the 98 environmental variables were reprojected
from their native resolutions to WGS84 (EPSG:4326) projection with 3
arc second grid cell resolution. The bilinear interpolation method was
used for this reprojection task. Each covariate data layer had the extent:

Fig. 2. Distribution of soil thickness point observation colour coded by the source of the data.

Table 1
Summary of data available and used for spatial modelling of soil thickness in Australia. NSSC (national soil site collation), NGIS (national groundwater
information system), GA rocks (Geoscience Australia rock properties database).

Dataset Number of available site data (before filtering steps) Number of site data suitable for spatial modelling

NSSC 277,943 43,613 (non-censored); 50,325 (right-censored)
NGIS 357,834 76,995
GA rocks 14,616 14,616
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112.99958°E–153.99958°E; 10.0004°S–44.00042°S.

2.2. Processing of datasets

2.2.1. Observational data
A significant amount of data processing was needed to harmonise

and extract observed soil thickness values from both the NSSC and NGIS
databases. The common goal for both datasets was to identify the depth
of the bottom boundary of the soil before it transitions into consolidated
or semi-consolidated lithic material or rock. For the NSSC database this
identification process was done by analysing the horizon codes that
were assigned to layers within each recorded soil profile. Horizon no-
tation for all profiles followed the designation system as detailed in
National Committee on Soil and Terrain (2009). The data challenge was
to record the depth within a soil profile in the first instance or occur-
rence of a ‘C’ or ‘R’ horizon which directly underlaid either an A, B, O or
P horizon. Our analysis also specified that the tops of transitional
horizons such as CB, AC, BR and the many other related variants be
classified as non-soil material, and in most cases, the depth at which
these horizons occurred was deemed the soil thickness. Our analysis
revealed a total of 3485 different horizon name designations, 822 of
which contained C or R descriptors. The basic workflow of the analysis
performed on the NSSC data was as follows:

For each profile;

1. Does soil profile have horizon descriptors?
a. Yes: move to step 2
b. No: Exclude profile from further analysis and move to next soil

profile
2. Does soil profile contain a ‘C’ or ‘R’ horizon (or in other words, does

the soil profile contain one of the 822 horizon designations that
contain a ‘C’ or ‘R’)?
a. Yes: Record the top layer depth in the first instance that such a

horizon occurs. This is the recorded soil thickness.
b. No: Record the maximum depth of the profile and indicate that

this profile is right-censored.

This analysis revealed 43,613 credible soil profiles with recorded
lithic or paralithic contact and a further 172,704 credible soil profiles
that were right-censored. 61,626 soil profiles were excluded that did
not have horizon descriptors. A further data reduction procedure was
applied to the right-censored data to exclude soil profiles where the
maximum recorded depth was 1.35 m. While there are few exceptions,
we selected this depth from prior experience operating soil coring in-
struments which predominantly have a maximum substrate penetration
no greater than this depth. By removing right-censored data that are
less than 1.35 m, first it makes the modelling method (described below)
more plausible and importantly, removes a large number of topsoil-only
soil profile observations. This data reduction procedure resulted in
having 50,325 right-censored soil profile observations for spatial
modelling.

Processing of the NGIS database followed a similar sequence to that
described in Wilford et al. (2016). That is, the boundary between re-
golith and fresh bedrock was designated using a query routine applied
to more-or-less free-form text of bore hole layer descriptions which
searched for the boundary between soil material and consolidated or
semi-consolidated materials. For every bore log at each layer described,
the database has variables for specifying major and minor lithologies of
the drilled material. Then there is a free form text description of this
material. Lithological information is often provided without associated
text description and vice versa. Where no such information was pro-
vided, the data point was subsequently removed from further analysis.
Single word, multi-word, and phrase-word libraries or lookup tables
were manually compiled to distinguish soil material from lithic and
para-lithic material. For lithologies that indicated the drilled material
was soil material, some text examples included: “CLAY”, “MARL”,

“TPSL” for clay, marl and topsoil respectively. The lithology categories
also had an element of free-form language which we cross-referenced
with text descriptions to confidently determine their meaning. Some
example lithologies indicative of rock material included: “SHLE”,
“ROCK”, and “LMST” for shale, rock, and limestone respectively. Some
indicative words and text phrases included: “sands”, “unconsolidated
clay”, “overburden”, and “loam”; and for rock: “calcrete”, “sandy silt-
stone”, and “brecciated”. The decision to allocate a layered material
within a bore as either soil material or consolidated material was based
on either the lithology code or text description when only one piece of
information was available. Where both pieces of information were
available each phrase-word library was used. This text processing to
distinguish the boundary between soil material and consolidated ma-
terial was an exacting procedure where any sign of ambiguity or non-
match with the compiled word libraries meant a decision could not be
made, and therefore the bore log in question was removed from further
analysis. Ambiguity in this situation included words or phrases for soil
materials mixed with those of consolidated material. The success of this
text analysis procedure was highly dependent upon richly populated
word libraries to capture the predominant words and phrases in order
to reduce ambiguity and clearly distinguish the two categories of soil
material and semi- or fully consolidated material. This analysis was
necessarily iterative. Of the 357,834 bore log records in the NGIS da-
tabase we extracted 76, 995 credible records that met the rigorous
search criteria.

A summary of the data composition before and after filtering steps is
given in Table 1.

2.2.2. Environmental covariate data
In order to get a more balanced or even contribution of SCORPAN

variables in the spatial modelling, while also aiming for a simpler
model configuration with minimal redundant covariates, we opted to
implement a principal component analysis (PCA) of the available con-
tinuous covariate data. In our study all but one of the environmental
covariates was continuous which was the geomorphons terrain classi-
fication layer which was a categorical variable of landform character-
isations. The PCA was performed for each grouping of covariates for
each factor of the SCORPAN function. In our case this meant per-
forming PCA for the 47 climatic variables in one workflow, 21 organism
variables in another, and 16 relief variables in another. We combined
the 14 soil and parent material layers for the last PCA workflow. For
each PCA, 500,000 randomly allocated point locations were distributed
within the spatial data extent of the rasters. We performed a raster data
extraction at each point location which resulted in a 500,000 × N
(number of variables) matrix, which were subjected to PCA after the
data were centred and scaled. We selected the number of PCs that cu-
mulatively summarised at a minimum 95% of the data variation. Once
done we mapped the PCs using the PCA equation and the stacked raster
layers. These workflows resulted in 12, 4, 9 and 10 PCA layers for the
climate, organism, relief and parent material + soil SCORPAN vari-
ables.

2.3. Spatial modelling

Upon compiling all the available soil thickness observation datasets
to observe the distribution of the data, we noted it to be very non-
symmetrical with a long tail, which was also quite lumpy or multi-
modal (Fig. 3). There were many observations with zero or close to
zero, which predominantly would have come from the rock outcrop
observations, and many samples between 0 and 2 m. The long tail of the
distribution spanned from about 2 m up to over 35 m (note we cut off
the tail of the distribution shown in Fig. 3 to 10 m for visualisation
purposes). Some initial investigative modelling work involved using a
machine learning model (such as Random Forest) on the data both
untransformed and transformed –square-root and natural log transform
of the soil thickness data were trialled. But this yielded unsatisfactory
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results where we found the influence of the weighty long tail of the
distribution resulted in overprediction when assessing the model with a
test dataset. We therefore opted to use a multi-model approach which
entailed three separate models for:

Model 1. Predicting the occurrence of rock outcrops.
Model 2. Predicting the thickness of soils within the 0–2 m range
Model 3. Predicting the occurrence of deep soils (soils greater than

2 m thick)
Prior to any modelling, all available points were intersected with

each of the 36 PCA covariate layers to retrieve their values at those
point locations. For all three models, 5-fold cross validation (repeated
50 times) was implemented in order to generate empirical distribution
functions for each prediction that was made. For Models 1 and 3, the
prediction is expressed as a probability of occurrence in both cases,
whereas for Model 2, the predictions were expressed as the median
value of the repeated 5-fold model predictions, and upper and lower
bounds of the prediction distribution which corresponded to the 5th
and 95th percentiles of the predicted values. We also provide ex-
ceedance probability estimates from this information for specified
depths: 10 cm, 30 cm, 50 cm, 100 cm, 150 cm, and 200 cm. The ex-
ceedance probability estimate is just the estimated probability that the
soil thickness at a given location exceeds the specified soil thickness
threshold. Note that also for Model 2 we also modelled the spatial
variation of model results with variograms, where more information
about this is discussed further on.

All three models utilised the random forest (RF) data modelling
algorithm (Breiman, 2001), in particular the ‘Ranger’ implementation
of it (Wright and Ziegler, 2017) which is faster and particularly suited
for high dimensional data. This model can be used for both cases of
floating-point number prediction (regression) and categorical value
prediction. The task for these models is to find relationships and pat-
terns within the environmental data that optimises the prediction ac-
curacy of a given target variable.

Models 1 and 3 used the categorical model variant of the Ranger RF
which was preceded by distinguishing; for Model 1, the observations
that were deemed as rock outcrops from soils. And for Model 3, dis-
tinguishing soils that were less than 2 m thick (and not rock outcrops)
from soils greater than 2 m thick. Ultimately both Models 1 and 3 were
binary categorical models. For Model 1 the balance of observation was
14,616 and 169,581 for rock outcrops and soils respectively. For Model
3, the balance of observations was 125,918 and 58,279 for less than 2 m
and>2 m soils respectively. 50 repeats of 5-fold CV (cross-validation)
iterations of the Ranger RF model were run for each Model variant.
Prior to running the models, we optimised the RF hyperparameter
‘mtry’ (number of variables to possibly split at in each node of the
random forest model) using a purpose built cross-validation scheme
that is facilitated in the caret (Kuhn et al., 2019) R package. The

number of trees to grow was not optimised and set to 500 as this was
computationally efficient for our computer system.

Model 2 used the regression form of the random forest model. After
removing from the total data set the observations that were regarded as
rock outcrops and soil greater than 2 m, there were 111,302 observa-
tions available. Of these, 67,698 had explicitly defined soil thickness
values. The remaining 43,604 were right-censored data and were
treated as follows. For each repeated 5-fold iteration, prior to splitting
the data in calibration and validation datasets, values from a beta
function were drawn at random of length 43,604. This value (between 0
and 1) was multiplied by the censored value soil thickness and then
added to this same value, creating a simulated pseudo-soil thickness. In
their work, Kempen et al. (2015) implemented a similar procedure
when working with peat thickness data and used beta function shape
parameters of 2 (a) and 5 (b) based on expert judgement. In our work
we came upon the values of 2 and 5.5 for these same two parameters by
experimentation. This experiment (results not shows here) entailed
searching for sites that fulfilled the criteria of having observations of
non-censored and right censored data relatively close to each other.
Sequentially different values of a and b were trialled, and the ideal
combination were the values resulting in the means of the actual soil
thicknesses and pseudo-soil thicknesses being nearest to parity. We
found numerous combinations of these values could achieve this re-
quirement yet values near or close to 2 and 5.5 consistently gave the
ideal outcome and so were selected for this study.

Once the simulated data were combined with actual soil thickness
data, the values were square-root transformed to approximate a normal
distribution. Ranger RF modelling proceeded after optimising the
Hyperparameter settings as described above for the categorical mod-
elling. Like the categorical modelling, 50 repeated 5-fold CV iterations
were computed. Model 2 also entailed assessing the spatial auto-
correlation of model residuals, with the intention that the spatial pat-
tern of these errors could add further predictive skill in predicting soil
thickness on top of what was captured in the environmental covariate
data.

Rather than compute variograms upon each derived set of model
residuals from each iteration, a far simpler approach in terms of com-
putation was used. A small sub-hypothesis guiding the decision making
was that predictive skill would not improve significantly by spatial
modelling of the autocorrelated ranger RF residuals. There were two
reasons why this was believed to be the case. First, the RF algorithm
from experience tends to overfit or does not generalise too well. The
algorithm will search for patterns in the data that maximises the ac-
curacy. From the practical perspective, when this occurs, there is little
to no spatial autocorrelation pattern amongst the residuals to work
with, making the variography task somewhat redundant. Secondly,
which is also informed strongly by the first is the fact that we doubted
the validity of global variograms fitted at the scale at which our data
existed. Much more would be gained by local fitting of variograms, but
this would require significant computational resources and major
modification of the overall workflow that was determined to be un-
feasible for the present study.

Therefore, the simpler workflow which we describe now was im-
plemented. This entailed, from the total combined dataset, selecting the
observations that were non-censored. These data were then (with their
covariates) passed into each fitted ranger RF model where model re-
siduals were then calculated. This created for each observation a vector
of residuals from which we estimated the median. We then auto-
matically fitted a variogram to this data using the automap R package
(Hiemstra et al., 2009). We then used this fitted variogram to predict a
model residual layer onto the same grid used for all the covariate layers.
In terms of generating maps of soil thickness, each model iteration was
applied using each of the covariate layers as predictor variables, fol-
lowed by adding the random forest prediction to the residual layer. We
then took the median and 5th and 95th percentiles of the empirical
distribution which were mapped accordingly.

Fig. 3. Histogram of soil thicknesses of combined NSSC and NGIS datasets.
Contains both censored and uncensored data. The tail of the distribution was
cut off at 10 m for visualisation purposes.
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For all model approaches, we report goodness of fit statistics in
terms of the validation data (data withheld from each model iteration)
on the basis of the average and standard deviation of the overall ac-
curacy and Kappa statistic (for Models 1 and 3) and the root mean
square error and concordance coefficient (Model 2).

All three model approaches were integrated via a simple ‘if-then’
pixel-based procedure. At each pixel, if Model 1 indicated the presence
of rock outcrops 45 times or more out of 50 (90% of resampling
iterations), the estimated soil thickness was estimated as rock outcrop,
or effectively 0 cm. Similarly, for Model 3 which was the model based
on prediction of deep soils (soils> 2 m deep). In no situations did we
encounter both Models 1 and 3 predict in the positive on 90% or more
occasions simultaneously. If Model 1 or 3 did not predict in the positive
in 90% of iterations, the prediction outputs of Model 2 were used.

After model integration, we derived a set of soil thickness ex-
ceedance probability mapping outputs. These were derived simply by
assessing the empirical probabilities (at each pixel) and then tallying
the number of occasions the estimated soil depth exceeded given
threshold depths of 10 cm, 50 cm, 100 cm, and 150 cm. This tallied
number was divided by 50 to give an exceedance probability for each
threshold depth.

3. Results

The quality of the integrated modelling of soil thickness across
Australia is given in terms of each of the contributing models. The re-
sults are summarised in Table 2 and are based entirely on data that
were excluded from model fitting. The median concordance coefficient
for Model 2 (model for predicting soil thickness on a continuous scale
from 0 to 200 cm) that did not consider further spatial modelling of the
residuals was 0.768. Our analysis found there to be spatial structure in
the residuals which was described with a Matern variogram (Stein’s
parameterisation) that had parameters: Nugget = 0.007, Sill = 0.01,
distance = 245,605 m, and Kappa (smoothness parameter) = 0.2.
Kriging with this variogram resulted in a map which is displayed as
supplementary material. However, we decided not to add the RF model
predictions with the map of kriged residuals because there was not any
improvement in the goodness of fit statistics (the concordance coeffi-
cient reduced to 0.705 and the RMSE increased to 0.273 (square-root
units) compared to 0.257 for just using the modelled predictions). The
hex-plot (Fig. 4) shows the comparative modelled predictions and as-
sociated observations that binned for different depth increments. Note
that the observations include the non-censored and censored data,
where the observation for the censored data was simulated (from the
beta distribution). Fig. 4 aggregates data from each model iteration that
were excluded from the model fitting and the colours distinguish total
counts in each ‘bin’. Most of the grouping of the data are close to the 1:1
observed vs predicted line which is a desired outcome. Notwith-
standing, there appears to be some overprediction evident in soils be-
tween 0 and 1 m and some underprediction in soils 1–2 m thick.

Model 1 which was the binary model to distinguish rock outcrops

from soil cover with undefined thickness was found to have an overall
accuracy of 99% (50th percentile). Model perturbation with iterative 5-
fold random data splitting did not cause any fluctuations in goodness of
fit for Model 1. This was the case also for Model 3, although with less
overall accuracy of 85%. Kappa coefficients for both Models 1 and 3
confirmed their predictive skill with values of 0.879 and 0.641 re-
spectively.

Model integration and post-processing resulted in the derived spa-
tial products shown in Fig. 5 as the 5th, 50th and 95th percentiles of the
empirical distributions at each pixel. There is broad similarity in spatial
pattern when comparing with the regolith depth map produced by
Wilford et al. (2016). While not directly correlated, the pattern of deep
regolith has some correspondence with deep soils. Compared with the
Viscarra Rossel et al. (2014) soil thickness map, our study displays a
more granular spatial heterogeneity and delineates deep soils (> 2m).
For example, riverine and alluvial and lacustrine plain areas have re-
latively deep soils which corresponds well with legacy soil surveys
(Chen, 1997).

For all three models, principal component variables of the climatic
data theme featured strongest. In fact, for each model type, each of the
12 climatic data themed PCAs were in the top 20 most important model
variables. Based on variable importance measures that help summarise
random forest models (Louppe et al., 2013), we aggregated these across
each model iteration to get an overall sense of which variables con-
tributed most strongly to each model. For Model 1, the other variables
which featured in the top 20 included a single Organism themed PCA
variable that was in fact the single most important variable overall. The
strong relationship between vegetation/landuse and the presence of
rock outcrop or very skeletal soils is indicative of landscapes subject to
minimal disturbances relative to those under intensive agricultural
management (the latter for which can be relatively easy to distinguish
with multispectral remote sensing satellite imagery). Relief and Parent
Material themed PCA variables had 4 and 3 variables each in the top 20
most important for Model 1.

For Model 2 in addition to the 12 climatic data themed PCAs, Relief,
Parent Material and Organism themes each had 4, 3, and 1 PCA vari-
ables in the top 20 most important. The Organism PCA of Model 2 was
well down the list this time and the Relief PCA variables featured more
prominently at the top of the list and included the geormorphons
variable, which help describe particular terrain morphology in cate-
gorical terms. This outcome (Relief being relatively important predictor
variable of soil thickness) coincides with earlier studies such as Patton

Table 2
Goodness of fit statistics of the 3 individual models based on data excluded from
model fitting (validation data). Values represent the median of 50 model
iterations and values in square brackets represent the 5th and 95th percentiles.

Model RMSE Concordance

Model 2 (Ranger model only) 0.257 [0.255–0.258] 0.768 [0.764–0.772]
Model 2 (Ranger model + kriged

residuals)
0.273 [0.271–0.274] 0.705 [0.701–0.710]

Overall accuracy
(%)

Kappa coefficient

Model 1 (rock outcrops vs. soil) 99 [99–99] 0.879 [0.872–0.884]
Model 3 (soil > 2 m vs soil < 2 m 85 [85–86] 0.641 [0.636–0.648]

Fig. 4. Hex plot of observed soil thicknesses vs. associated modelled soil
thickness. These data are based on data excluded from model fitting from each
model iteration and include both non-censored and right-censored data. The
colour scale represents the frequency of each observed-predicted pair. Black
line corresponds to a 1:1 line.
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et al. (2018) and McKenzie et al. (2003) where geomorphologic factors
are relied upon for skilled estimates of soil thickness across investigated
catchments.

Model 3 had 4 Relief themed PCA variables in the 20 most im-
portant variables in addition to the geomorphons variable which was
the single most important variable. This would indicate that across
Australia the predominantly flatter landscapes are associated with
deeper soils than those in more rugged and steep landscapes. Parent
Material and organism themed PCA variables had 2 and 1 variables
respectively in the 20 most important variables.

We note that climatic variables were included in all three Models.
The climatic variables are statistical moments of long term (30 year)
climatic data and meteorological derivatives of rainfall and tempera-
ture, incorporating topographic adjustment to account for the insola-
tion effects of solar radiation exposure where relevant. The general
spatial patterns of climatic data variability are intended to represent
relatively deep time – stable climates over several thousand years since
the last ice age. There is no assertion that such information are causa-
tive factors underpinning spatial heterogeneity of soil thickness across
Australia. However, it is apparent that climatic regions of Australia
would be a strong driver of soil formation processes interacting with
landform, geology and biota. Climate regulates biota (e.g., the dis-
tribution of biomes) and the weathering of parental materials. The in-
clusion of both inter-annual and seasonal climate together with topo-

climatic effects has resulted in relatively skilful predictive models of soil
thickness. To generalise, the Australian land surface is very flat and
geologically very old and has been subject to intensive and prolonged
weathering (Young and Young, 2001). Notwithstanding the human-
induced effects on present soil condition – although soil thickness
maybe less affected by this in most context – Australian soils are likely
to be less affected by soil forming factors such as modern geologic ac-
tivities and geomorphic-induced transportation and translocation pro-
cesses, at least at the continental extent of digital soil mapping.

The exceedance probability maps (Fig. 6) distinguish Australia’s
shallow and rocky soils and the relatively deep soils. Fig. 6a and b
highlight large areas of shallow soils and rock surfaces in areas where
one would expect to see them. For example, along Tasmania’s west
coast (Pemberton, 1989) and the alpine region in the south east of the
island (Costin, 1954). In northwest Queensland, the relatively shallow
soils appear in expected places such as the Isa Highlands which are
coincident with the outcrop area of the folded and metamorphosed
rocks and igneous rocks of the Cloncurry complex (Perry et al., 1964).
In Queensland’s Cape York region there are consistent correlations
between shallow and rocky soils with soil landscapes described by
Wilson and Philip (1999) and Biggs and Philip (1995). Over in Western
Australia, the Pilbara and Goldfields regions show large areas of
shallow skeletal soils which are consistent with descriptions in Tille
(2006). In general, Fig. 6 shows large areas of soils deeper than 1 m

Fig. 5. Integrated maps of soil thickness showing predictions for the median (50th percentile), 5th and 95th prediction percentiles.
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across much of Australia’s interior, including agriculturally important
areas in the weathered alluvial floodplains, and arid deep sands and
dune systems.

4. General discussion

The soil thickness mapping products developed in this study are a
significant improvement on prior attempts at the national extent. These
maps are by no means error free, as our results have established, and
will need to be updated and improved overtime as new techniques, data

and modelling approaches evolve. It is very much in the purview of
ongoing digital soil mapping activities at least at the national extent
amongst other goals to set up an infrastructure to facilitate the updating
and repeatability of the mapping products (Searle et al., 2019). Here,
this is exemplified by making the workflow and importantly the un-
derpinning code base available to the public in a version control re-
pository (https://github.com/AusSoilsDSM/SLGA/tree/master/SLGA/
Development/soilThickness). Note this repository does not contain
the data that was used in the study but is nonetheless publicly available.
Soon, work could involve a further integration with work done to date

Fig. 6. Soil thickness exceedance probability maps for specified threshold depths. a) 10 cm, b) 30 cm, c) 50 cm, d) 100 cm, e) 150 cm, and f) 200 cm.
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on regolith mapping (Wilford et al., 2016). This could possibly allow for
more of the drill hole data to be considered in the modelling, but per-
haps more judiciously to account for issues with using drill hole data
such that the data logging will be more useful in some areas than in
others. Both regolith and soil thickness mapping could be improved
where products would suit both hydrologists (for aquifer modelling
work) and have the necessary granularity for agriculturists concerned
with planning irrigation events.

We see immediate applications of this updated soil thickness map-
ping for whole soil estimates of soil carbon stocks to support improved
inventories of land-based carbon flows for greenhouse gases assess-
ments and reporting. Similarly, soil thickness models are also useful as
an input with other variables for predicting terrestrial ecosystem dy-
namics and species/ecosystem distribution patterns (Williams et al.,
2012). There is also a growing need for monitoring and forecasting of
soil water storage and capacity in the agriculturally important areas of
Australia. For example, for improved water usage efficiency in agri-
cultural zones, and decision making around planting, and whether en-
ough water is in the system to carry a crop through to harvest or to cut
losses and hay off the available biomass. In general, a better handle on
soil moisture status and dynamics will largely improve resilience across
Australia particularly in drought affect times, and this needs to be un-
derpinned by useful and indicative soil information such as soil thick-
ness.

5. Conclusions

Acknowledging recent and historical approaches for mapping soil
thickness around the world this study sought to develop an approach
customised to Australian conditions and available data sources with
which to derive inferences. This was achieved by separate modelling of
rock outcrops, intermediate and deep soils that were then integrated
into one output with associated quantified uncertainties. Each of the
spatial models were calibrated using a suite of environmental covariates
for which climatic themed variables consistently came up as the most
important predictor variables. We deduce this because such variables
have direct and indirect effects via regulating biota and the weathering
of parental materials which ultimately drives spatial heterogeneity of
soil thickness across Australian landscapes. This updated soil thickness
mapping for Australia is an improvement on previous efforts and will
provide better information to inform end-users in applications such as
estimating soil and carbon stocks and soil water balance modelling and
monitoring.
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