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A B S T R A C T   

We set out in this work to create a suite of 3D-like digital soil attribute maps for a research farming enterprise 
situated in the South Eastern Agricultural Zone of NSW, Australia. These digital maps come about because of a 
reconnaissance soil survey to map out the farm’s soil baseline conditions and bring to bear the tools and pro-
cesses of the digital convergence. This entails on-the-go proximal soil sensing for rapid and granular farm 
landscape characterisation, which helped inform field-based soil survey and sampling, and later the soil mapping 
too. Soil infrared spectroscopy associated inference (vis-NIR) was then used to facilitate very detailed soil 
characterisations of key soil attributes that included soil pH, carbon, soil texture, bulk density, and cation ex-
change capacity amongst others. This work then enabled the ability to build bespoke spatial models to generate 
3D-like inherent and dynamic digital soil attribute maps. We highlight some of the digital soil infrastructure 
features which include flexibility, customisation, and work pipelines that will ease the updating and improve-
ment of maps. We also highlight some immediate goals which include a formal inclusion of measurement un-
certainties brought about by soil spectral inference into the spatial modelling process. To date, some of the digital 
soil mapping has been used for applications such as lime requirement estimations to address subsoil acidity issues 
and therefore changing/improving the soil’s capability at BARS. Overall, the intention of this work is to provide a 
detailed account of what is entailed in creating a comprehensive digital soils infrastructure for a farm including 
the likely costs to implement and the associated opportunities it provides.   

Introduction 

Disruptive digital technologies have the potential to re-frame and re- 
define how agri-businesses operate. The agricultural enterprise is one 
such business, that has embraced the recent technological revolution 
brought about by the ubiquity of digital data streams and sensing 
technologies coupled with unparalleled computing and data analysis 
systems (Sonka, 2021). This ‘data-driven agriculture’ promises an in-
crease of on-farm productivity and sustainability gains through such 
things as optimal use of inputs, i.e. variable rate technologies, to gran-
ular insights on the biophysical status and function of the land, to 
real-time and forecasting insights of crop productivity and soil moisture 
fluxes brought about through sensor networks, detailed process-based 
modelling and forecasting simulation work. Data-driven agriculture 
then also promises to facilitate the rapid and cost-effective spatially 
explicit assessment of inherent and dynamic soil natural capital stocks 
and their condition and capability across a farm that can support natural 

capital accounting (Rossiter et al., 2018). 
One component of the agricultural system that has evolved 

immensely in the last 20 years is our ability to rapidly measure and 
comprehensively characterise soils. Developments in earth observation 
platforms, proximal soil sensing technologies, geostatistics, spatial data 
science and machine learning have collectively contributed to a 
powerful ability to get detailed and highly granular insights about the 
status and functions of soils (McBratney et al., 2018). For example, 
characterisation of soils has moved substantially onward from just 
coarse categorisations of soil type and suitability for a particular land-
use. Now it is possible to get very detailed spatially explicit insights 
about individual soil properties such as pH, nitrogen, carbon, texture, 
CEC and soil water holding characteristics. These insights are under-
scored by digital soil mapping methodologies and include lateral, ver-
tical, and even temporal characterisations (Searle et al., 2021). 

Precision agriculture has been at the forefront of exploiting these 
new technologies by advancing the concept of site-specific crop 
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management (Whelan, 2018), whereby in response to soil spatial vari-
ability, management practices such as fertiliser and lime applications 
can be customised accordingly (i.e. through variable rate application). 
Similarly, such detailed characterisations of soil enable efforts to iden-
tify and delineate soil constraints so that management and amelioration 
plans can be defined (Filippi et al., 2020). Given the substantially high 
costs of amelioration and the oftentimes, radical interventions required 
such as soil flipping (or inversion) and deep ripping (McBratney et al., 
2016), a granular insight into soil spatial variability is keenly needed to 
reduce the high costs associated with these interventions. Other uses of 
detailed soil insights include on-farm soil carbon auditing via direct 
measurement methods which enables landholders to participate in the 
carbon economy and earn credits and potentially an alternate income 
stream simply through soil carbon sequestration (Malone et al., 2018a). 
This feeds into the emerging practice of natural capital accounting 
whereby the services and functions performed by soils are effectively 

added to the balance sheet of a farming business enterprise (Guerry 
et al., 2015). This recognises the importance and value of natural re-
sources to supporting agricultural productivity. Simply left unchecked 
or unsustained, those key resources can potentially degrade in function 
and ultimately cannot support the kinds of agriculture those lands were 
previously capable of supporting. It is likely that general farm operations 
and data collection will further advance in sophistication as existing and 
new digital technologies are exploited to measure and monitor the 
natural assets of a farming enterprise. 

The digital farms of the current time and into the future will likely be 
underpinned with rich datasets and monitoring technologies that will 
assist and augment on-farm decision making. This paper describes a set 
of processes which can easily be generalised and adapted to any agri-
cultural landholding to establish a baseline spatial soil data infrastruc-
ture that over time can be updated, improved, refined, and expanded. 
More explicitly, here we describe how currently available digital 

Fig. 1. General soil survey and digital mapping workflow. Grey boxes are fieldwork activities, orange boxes are data analysis steps, green boxes are laboratory-based 
activities, blue boxes are data modelling activities. 
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technologies and work methods can be used to create a suite of 3D-like 
soil condition baseline maps relevant for the farm enterprise. This work 
was carried out at the Commonwealth Scientific and Industrial Research 
Organisation Boorowa Agricultural Research farm (BARS), a mixed 
cropping enterprise in south eastern Australia. 

With our eye on the possibilities of farm-scale digital soil mapping as 
demonstrated in Ramirez-Lopez et al. (2019) and Jones et al. (2022), the 
steps of surveying and mapping the soils of BARS uses tools and pro-
cesses of digital agriculture carried out in a sequential manner from 
field-based optimal data acquisition and soil sampling, to soil mea-
surement, modelling and finally mapping of the spatial distribution of 
key inherent and dynamic soil attributes across the extent of the farm in 
a comprehensive manner. This work sequence is executed as follows and 
summarised in a pictorial workflow in Fig. 1:  

• Initial farm-wide proximal soil sensing survey using a suite of on-the- 
go measurement instruments.  

• Spatially-explicit data-informed (by step 1) optimal site selection for 
soil core sampling with the intent to capture as much soil spatial 
variability as possible.  

• Proximal soil sensing of all intact soil cores (<1.6 m) using infrared 
spectroscopy and gamma attenuation followed by soil infrared data- 
informed sub-sampling to select soil specimen for laboratory wet 
chemistry measurements. These laboratory-based soil measurements 
together with infrared spectral responses are then used to derive soil 
spectral calibration models, which can be extended to all soil spec-
imen to deliver whole-soil characterisations of the given suite of 
measured soil variables.  

• Whole soil profile characterisation data are then used together with 
processed data collected in step 1 to build bespoke spatial models to 
generate 3D-like digital soil attribute maps. 

Materials and methods 

CSIRO BARS site description 

Boorowa Agricultural Research Station (BARS) is a 220 ha mixed 
cropping farming enterprise situated in south-eastern New South Wales, 
Australia Fig. 2. 3 km south of the town of Boorowa [34.4386S, 
148.7231S], BARS is situated in the Boorowa River catchment located 
within the Lachlan Fold Belt. The terrain is comprised of gently undu-
lating (1–3% slope) to undulating rises (3–10% slope) with local relief 
between 9 and 30 m above the average 600 m a.s.l. elevation across the 
area. The area experiences a temperate climate with long summers and 
cool to cold winters. Rainfall on average is 619 mm p.a. and is slightly 
winter dominated. The underlying geology at BARS are Silurian ig-
nimbrites and tuffs with associated interbedded sediments of the Douro 
Group, which is dominated by the Hawkins Volcanics (Cas, 1983). On 
crests and slopes, soils are yellow to light reddish duplex (Texture 
Contrast >20% increase in Clay between A and B horizon) soils which 
classify out commonly to either Yellow or Red Chromosols or Kurosols 
depending on whether there is subsoil acidity. Mottling of the subsoil is 
common. Other soils include Red and Yellow Dermosols and Kandosols 
and Yellow Sodosols are often found near drainage lines (Hird, 1991). 

Soil survey – proximal soil sensing 

Data acquisition 
An all-terrain vehicle (ATV) with precise RTK GPS navigation and 

recording capabilities, fitted with electromagnetic induction (EMI) and 
passive gamma-radiometric sensors were used for on-the-go data 
acquisition across BARS. The ATV was driven across BARS at 50 m line 
spacing intervals (5 km/h), with all digitally acquired data (GPS and 
proximal sensor outputs) streamed together into a custom-designed data 
acquisition software. The simultaneous recording of all sensor outputs 
was achieved at intervals of at least once per second while in operation. 

A SMART6-L GNSS (NovAtel, Canada) digital GPS data receiver with 
centimetre level accuracy was used for the locational data acquisition. 
Data acquired by the GPS receiver are position and ground elevation. 
EMI data were acquired using a Geonics EM38 (Geonics Ltd, Mis-
sissauga, Ontario, Canada) in both the horizontal (EM38h) and vertical 
(EM38v) dipole modes of operation. In the horizontal mode, conduc-
tivity (mS/m) has the greatest sensitivity of measurement at the soil 
surface (~0.75 m) and declines with depth. In the vertical mode, con-
ductivity is measured to an approximate depth of 1.5 m (McNeill, 1990). 
Gamma-radiometric data were collected using a RSX-1 gamma radio-
metric detector consisting of a 4 L Sodium-Iodine crystal (Radiation 
Solutions Inc., Mississauga, Ontario, Canada). This passive gamma 
sensor records the naturally occurring concentration of radioactive 
isotopes in the soil (top 30–50 cm) based on the principle that each 
gamma ray photon relates to a discrete energy window which is char-
acteristic of the source isotope (Minty et al., 1998). Radioisotopes of 
potassium (40 K), uranium (238U-series) and thorium (232Th-series) 
produce high-energy gamma-rays with sufficient intensities to be picked 
up by the detector. 

Processing of proximally sensed data 
The raw data (GPS, radiometric, and EMI data) were pre-processed to 

clean up obvious acquisition errors and data outliers. The cleaned data 
was then processed to create maps on a regular 2.5 m grid across BARS. 
Here, we used local block kriging where block size was equivalent to the 
grid spacing, i.e. 2.5 m x 2.5 m. Digital elevation maps as derived from 
the GPS data were further processed using supplied terrain analysis al-
gorithms from freely available GIS software (SAGA-GIS) to derive 
associated primary and secondary terrain attributes. Together, the suite 
of ‘environmental’ gridded data derived from the on-the-go proximal 
soil sensing survey included:  

• Digital Elevation model 

Elevation, slope gradient, slope curvatures (profile and plan), terrain 
wetness index, incoming solar radiation and flow direction and 
accumulations.  

• Gamma radiometric data 

Total count, gamma K, Th and U  

• Bulk soil electrical conductivity 

0–0.75 and 0–1.5 m 
The raw survey transects together with interpolated surfaces of key 

attributes are shown in Fig. 3. 

Soil survey – soil core sampling and measurement 

Soil survey sampling design 
Available resources permitted the collection and characterisation of 

soils at 300 sites across BARS. To select these sites, conditioned Latin 
Hypercube sampling (cLHS; Minasny and McBratney, 2006) was used, 
where the input data consisted of the on-the-go proximally-sensed data 
described in the previous Section. cLHS is a form of random-stratified 
sampling often used for soil survey delineation to support digital soil 
mapping as it is designed to optimally sample the spatial variation of its 
input variables. The algorithm has its origins in Latin hypercube sam-
pling (LHS) first proposed by McKay et al. (1979), which is a demon-
strably efficient way to reproduce an empirical distribution function, 
where the idea is to divide the empirical distribution function of a var-
iable, X, into n equi-probable, non-overlapping strata, and then draw 
one random value from each stratum. In a multi-dimensional setting, for 
k variables, X1,X2,:::,Xk, the n random values drawn for variable X1 are 
combined randomly (or in some order to maintain its correlation) with 
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the n random values drawn for variable X2, and so on until k-tuples are 
formed, that is, the Latin hypercube sample (Clifford et al., 2014). 
Minasny and McBratney (2006) recognized that some generalization of 
LHS sampling was required so that selected samples exist in the real 
world. Subsequently, they proposed a conditioning of the LHS, which is 
achieved by drawing an initial Latin hypercube sample from the ancil-
lary information, then using simulated annealing to permute the sample 
in such a way that an objective function is minimized based on the 
matching of empirical distribution functions and correlations between 
samples and that of the gridded data (population). The outcome is a 
sample configuration of size n where there is a high confidence the 
samples capture the distribution of the variables used in the algorithm, 
and thus a greater confidence the samples capture the known spatial 
variability of soils, which ultimately improves the veracity of spatial 
models developed to map the soils across the site. 

With 300 sites selected, soil cores were extracted at each of them 
using a vehicle mounted mechanical soil coring instrument (Geoprobe 
7822DT). The cores were taken to a depth of 1.6 m or to the depth where 
consolidated material was reached whichever was first. Core diameter 
was 50 mm and each was encased in a plastic sleeve to minimise dis-
turbances and contamination. At the time of sampling in March 2017, 
soils were in a dry condition. Fig. 4 shows the cLHS-derived soil coring 
locations across the extent of BARS. 

Processing of soil cores 
A field-deployable soil core sensing system (SCSS; Viscarra Rossel 

et al., 2017) equipped with a RGB camera, vis-NIR spectrometer and 
active gamma radiation source was used for acquiring comprehensive 

digital data from which soil characteristics were derived or inferred. 
Down the length of each soil core at regular intervals (every 2.5 cm to 
20 cm and every 5 cm from 20 cm to the end of the core), the roboticised 
and integrated scanning system collects an RBG image and a vis-NIR 
spectrum (300–2500 nm) from the soil surface face, together with 
measuring gamma attenuation as a gamma radiation source is pointed 
directly onto the soil. In the current work we do not explore an appli-
cation for using the RGB imagery and only focus on the soil infrared and 
gamma attenuation properties collected. 

The vis-NIR spectra were collected using a LabSpec spectrometer 
manufactured by Malvern Panalytical/ Analytical Spectral Devices 
(Boulder, CO, USA), which has spectral range of 350–2500 nm and a 
spectral resolution of 3 nm at 700 nm and 10 nm at 1400 and 2100 nm. 
Measurements were made with a high-intensity contact probe illumi-
nated by a halogen bulb (2901 ± 10 K). The contact probe measures a 
spot of 10 mm in diameter and is designed to minimize errors associated 
with stray light. At the beginning of each core measurement, the sensor 
is calibrated using a Spectralon® (Labsphere, North Sutton, NH, USA) 
white reference panel. Spectra were recorded with a sampling resolution 
of 1 nm so that each spectrum comprised reflectance at 2151 
wavelengths. 

Gamma attenuation was collected using an LB444 densitometer 
(Berthold Technologies GmbH, Bad Wildbad, Germany). The densi-
tometer contains a radioactive source (137Cs) with an activity of 185 
MBq and a photon energy of 0.662 MeV. The detector is an LB5441–01 
with an uncollimated NaI scintillation crystal of 25-mm diameter and 
25-mm length (Berthold Technologies GmBH, Bad Wildbad, Germany). 

The purpose of collecting soil infrared data down the length of all soil 

Fig. 2. Locality map of BARS in south-eastern NSW with reference to major metropolitan hubs of Sydney, Canberra and Wollongong.  
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cores was to exploit functional relationships between the light interac-
tion with soil and rapidly infer measurable soil attributes like soil car-
bon, texture, CEC and pH as examples. In general, optical sensors utilize 
various wavelengths from the electromagnetic spectrum to characterise 

soil properties (visible (vis): 400–700 nm; near-infrared (NIR): 
700–2500 nm; mid-infrared (MIR): 2500–25,000 nm). The absorption in 
the MIR region can be readily identified as it is related to the funda-
mental vibrations of molecules. The absorbance in the vis-NIR, however, 

Fig. 3. Collected proximal soil survey data collected for BARS. This includes the drive transects as taken by the ATV (top left). The onboard sensor collected in-
formation related to spatial position, elevation, soil conductivity and gamma radiometrics. Geostatistical techniques were used to create maps of these variables to 
use for subsequent processes including planning soil survey and assisting in the creation of digital soil maps. 
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is harder to interpret as there are fewer and broader absorptions related 
to overtones and combinations of the fundamental vibrations in the MIR 
region (Stenberg et al., 2010). Absorptions in the visible region are 
associated with minerals that contain iron (Sherman and Waite, 1985; 
Mortimore et al., 2004) and organic matter, while absorptions in the NIR 
region (780–2500 nm) result from the overtones of OH, SO4, and CO3 
groups, and combinations of fundamental features of H2O and CO2 
(Clark, 1999). More of the underpinning theory and review of 
wide-ranging literature about soil infrared spectroscopy is found in 
Soriano-Disla et al. (2014). 

The target measurement for gamma attenuation data is whole soil 
density. Lobsey and Viscarra Rossel (2019) describe the technique which 
is based on the fundamental physical relationships established through 
the Beer-Lambert Law where in the case of soil density, gamma atten-
uation is a function of its mass and the mass attenuation coefficients of 
soil and water in the attenuation path: 

I
I0

= exp[ − x(μsρs + μwρwθ] (1) 

Where I is the incident radiation at the detector, I0 is the unattenu-
ated radiation emitted from the source (essentially the reading from the 
detector when nothing is in the path of the radiation beam), and x is the 
sample thickness in centimeters. Parameters μs and μw represent the 
mass attenuation coefficients of the soil and water, respectively. 
Parameter ρw is the density of water, which is 1 g cm− 3, and ρs is the 
density of the soil (which is to be estimated in our case). θ is the volu-
metric water content of the soil in cm− 3 cm− 3. The sensor used in Lobsey 
and Viscarra Rossel (2019) is the same used in this work. Therefore, we 
used the same attenuation coefficients established in that research, 
which were 0.0770 cm2 g− 1 and 0.0832 cm2 g− 1 for μs and μw, respec-
tively. At the time of soil core scanning, an estimate of θ is made via a 
pre-calibrated vis-NIR soil spectral model based on data described in 
Baumann et al. (2022). In summary, that study used soils from 54 lo-
cations across Australian agricultural regions, from three depths: 0–15 

cm, 15–30 cm and 30–60 cm. The volumetric water content of the 
samples and their vis-NIR spectra were measured at seven matric po-
tentials from − 1 kPa to − 1500 kPa. From that data, the pre-calibrated 
soil spectral inference model composed of a bootstrap resampling par-
tial least square’s regression model of the collected spectra and 
measured θ data is used to infer θ at each measurement point down the 
soil core. With this estimate, the dry soil bulk density at the point of 
measurement is estimated as: 

ρb =
1

xμs
ln
(

I
I0

)

−
μw

μs
ρwθ (2)  

Soil spectral inference 
Laboratory analysis. While the dry soil bulk density can be estimated 

directly using Eq. (2) as the core scanning moves down the length of 
each soil core, the inference of other soil properties requires soil spectral 
model calibration which in this work were based on measurements of 
soil specimens taken from the soil cores that were put through the 
SCANS system. Collectively, across each of the cores and the associated 
depth intervals there were 7775 individual vis-NIR spectra taken. From 
these 7775 ‘specimens’, 380 were selected to be subjected to laboratory 
analysis. The analytes that were measured included:  

• Soil texture analysis to estimate the proportions of clay, silt and sand 
following the method of Gee and Bauder (1986).  

• Total soil carbon (%), organic soil carbon (%), and total nitrogen (%) 
were measured via the dry combustion method using a LECO CNS 
analyser (LECO Corporation, MI, USA). Inorganic soil carbon was 
assessed as the difference between total and organic soil carbon. 
Organic soil carbon was measured after total carbon was measured 
by processing the specimens through a repeated hydrochloric acid 
washing routine, removing any inorganic carbon. 

Fig. 4. Map of BARS showing the locations of the soil coring sites.  
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• Soil electrical conductivity (dS/m) was measured from a 1:5 soil/ 
water extract indicated a method 3A1 from Rayment and Lyons 
(2010).  

• Soil pH was measured both in 1:5 soil/water suspension (4A1) and 
soil/0.01 M calcium chloride extract (4B1) from Rayment and Lyons 
(2010)  

• Bicarbonate-extractable or Colwell phosphorus (mg/kg) was 
measured following the standard 9B2 method (Rayment and Lyons, 
2010).  

• Exchangeable bases and cation exchange capacity (CEC) was 
measured using 1 M ammonium acetate at pH 7.0 with pre-treatment 
for soluble salts and using automatic extractor (15D2; Rayment and 
Lyons, 2010). Units are cmol+/kg  

• Exchangeable acidity (hydrogen and aluminium) was measured by 1 
M potassium chloride (15G1; Rayment and Lyons, 2010). Units are 
cmol+/kg 

Soil specimen selection. To select the 380 specimens, all 7775 vis-NIR 
spectra were compiled, then subjected to dimension reduction using a 
principal component analysis (PCA). 6 principal components were able 
to summarise over 97% of the spectral variability which simplified the 
next step of specimen selection using the cLHS sampling algorithm as 
discussed previously in the context of site identification for soil survey. 
This general method for specimen selection is described in greater detail 
in Wadoux et al. (2021). Once selected, the specimen were extracted 
from their locations in their respective cores, dried, then grounded and 
sieved to <2 mm. The gravel and rock fraction were set aside for 
weighing. 

Soil spectral modelling. Soil spectral modelling proceeded by gener-
ating one model per soil analyte, except in the case of soil texture where 
a compositional data analysis method based on log-ratio transformation 
of the original data was used as the target variable. Compositional data 
analysis ensures the integrity of the simplex, i.e. the fractions of clay, 
sand, and silt sum to 1 following any sort of modelling procedure. In this 
work we used isometric log-ratio transformations which decomposes the 
original 3 vector tuple to 2 log-ratio vectors (Egozcue et al., 2003). Each 
of these log ratio vectors is set as a target variable for soil spectral 
modelling. After this, modelling is performed for each of the 2 vectors, 
the inverse of the log-ratio is then calculated to return the data into their 
original soil texture units. 

A soil spectral modelling approach using partial least squares 
regression modelling incorporated into a bootstrap resampling (with 
replacement) framework was used here. The number of bootstraps was 
set to 50, and cases not included in a particular model iteration (out-of- 
bag cases) were used for model validation. The useful property of this 
bootstrap model is that predictions can be made for each data case using 
each fitted model to generate an empirical distribution function (EDF), 
which can be used to derive key statistical moments such as the median 
and mean and variance. However, the EDF variance contributes only one 
part of the overall variance. The additional source of prediction variance 
in the modelling framework is what Rossel et al. (2015) describe as the 
discrepancies brought about through systematic (bias) and random 
(imprecision) errors in the modelling. This is expressed as the 
cross-validation mean squared error (MSEcv) and is calculated as the 
average of the mean squared error values from each model iteration on 
out-of-bag data. The variance of the EDF (right-hand side of Eq. (3)) 
accounts for errors in the deterministic component of the models. The 
other terms in Eq. (3) include n which is the number of iterations which 
is equal to 50, xi is the prediction for a case with a given model i. μ is the 
mean prediction for the case over all 50 iterations. 

VARtot = MSEcv +
1

1 − n

∑n

i=1
(xi − μ)2 (3) 

With VARtot defined, it is then a relatively straightforward approach 
to define prediction intervals for any defined confidence level. This is 

done by taking the square root of VARtot then multiplying it by 1 − α, 
where α is the quantile function of a normal distribution (upper tail) for 
a defined confidence level. For example, for a 90% prediction interval, 
the quantile function is approximately 1.64 (α = 0.95). The multipli-
cation of the square root of VARtot and the specified quantile function 
equates to a standard error which is added to and subtracted from the 
mean estimate of the EPD to derive the upper and lower prediction in-
tervals, respectively. For all soil spectral models, we derive prediction 
intervals with 90% level of confidence about the mean estimates 

Each of the models were validated in terms of the out-of-bag data 
withheld from each model iteration. Here, we report the root mean 
square error normalised by the interquartile range of the data (NRMSE) 
and Lin’s concordance coefficient (CCC) to quantify the prediction ac-
curacy and fidelity about the 1:1 line when comparing predictions with 
associated observations, respectively. The predictions here are the 
averaged values derived for each case. 

All spectra were pre-processed prior to model fitting to increase 
signal-to-noise ratio through a sequence of steps which included: spec-
tral trimming, Savitzky-Golay smoothing, and spectra baseline correc-
tion using the standard normal variate transformation all of which are 
described in more detail in Wadoux et al. (2021). 

Soil spectral model extension. A soil information database containing 
all scanned depth intervals for all soil cores was populated via model 
extension to the pre-processed vis-NIR spectra collected, i.e. inferred at 
every 2.5 cm to 20 cm, and then every 5 cm to the full length of the soil 
core. In this work, we derived the mean predictions, but in later studies 
the inclusion of spectral model prediction uncertainties into down-
stream processes such as digital soil mapping may be considered. The 
mean soil attribute predictions formed the input data needed for 
creating digital soil maps for BARS. 

Digital soil mapping 

Digital soil maps were derived for those soil analytes described in the 
laboratory analysis section, plus dried soil bulk density, which was 
directly inferred via gamma attenuation as previously described. The 
same digital soil mapping workflows were used across all soil analytes, 
except for soil texture where similarly to the soil spectral inference work, 
a compositional data analysis framework was used. Final digital soil 
attribute maps were derived for several soil depths including maps of 
corresponding estimates of prediction uncertainty. 

In general, 3D-like representations of soil attribute maps are pro-
duced via creation of maps for specified depth intervals of soil, in effect 
generating different layers for sequential depths down a profile to some 
defined maximum depth. Some guidance comes from the global soil 
mapping specifications for example where the recommendation is to 
output layers for the following depths: 0–5 cm, 5–15 cm, 15–30 cm, 
30–60 cm, 60–100 cm, and 100–200 cm (Arrouays et al., 2014). Soil 
profile data is usually harmonised using one of a variety of soil depth 
functions including splines, decay functions and other mathematically 
defined functions which are integrated to the target harmonised depth 
intervals (Malone et al., 2018b). In this work we used a mass-preserving 
soil depth function (Bishop et al., 1999) due to its flexible behaviour and 
wide use among DSM practitioners. More detail about the underpinning 
theory and application of the mass-preserving spline can be found in 
either Bishop et al. (1999) or Malone et al. (2009). 

The general use case for splines is to apply them to a collection of soil 
profile data where no common depth interval representation is present, 
such as a collection of profiles that have been described and charac-
terised according to pedogenic horizons. And the spline is useful in this 
case because once a common depth support is determined, all soil pro-
files can be harmonised to these intervals without loss of the original 
information due to the mass preserving properties of the spline. The 
digital soil mapping workflow then proceeds where the target variable is 
modelled for each depth interval as a function of an exhaustive suite of 
covariates or environmental variables. Sometimes, depth itself may be 

B. Malone et al.                                                                                                                                                                                                                                 



Soil Security 6 (2022) 100048

8

included in the model prediction variables, meaning that all available 
data can be included into a single predictive function instead of a 
separate one pertaining to each depth interval. The former approach 
(modelling each depth interval separately) is probably the most common 
approach. When including depth interval as a predictive variable, one 
needs to be careful about the selection of the modelling algorithm 
because artefacts generally will occur at the layer boundaries (Ma et al., 
2021). 

For the current work, all the characterisations for each soil core 
correspond to a common depth support as outlined previously, which 
means that the step of fitting splines could be negated here, and one 
could move immediately to the spatial modelling work. However, 
because spline fitting to soil profile data is an operationally simple task 
to carry out, and to demonstrate that digital soil maps can be customised 
to any specification set by a map user, we opted to set (arbitrarily) the 
depth support to the following intervals: 0–10 cm, 10–20 cm, 20–40 cm, 
40–60 cm, 60–80 cm, 80–100 cm, 100–120 cm, 120–140 cm, 140–160 
cm, and 160–180 cm. For example, at BARS a customized DSM depth 
support was required for two use cases; the estimation of lime require-
ment in certain paddocks which required finely resolved increment 
prediction intervals in the top 30 cm to detect banding of subsurface soil 
acidity, and soil moisture mapping. More on the lime requirement use 
case is discussed later on, whereas the soil moisture mapping work is 
discussed in a follow up research article. 

Note that the spline function does not extrapolate beyond the 
maximum thickness of a soil core or profile. Also note that a relative 
important parameter of the spline (lambda) controls the flexibility of the 
spline and consequently the fidelity of fitted spline to the observed data. 
There is a tendency when using very low values of lambda that over-
fitting occurs which can manifest by providing unreliable point-based 
estimates down a soil profile. Therefore, from a series of visual experi-
ments performed on the data we accepted a lambda value of 0.1 to 
ensure a good balance between fidelity and spline error. More infor-
mation about optimal tuning of the lambda parameter is provided in 
Malone et al. (2009). 

With the target variable data in the specified depth support, this 
information is then spatially intersected (via the nearest neighbour 
intersection method) with the suite of variables derived from the on-the- 
go proximal soil sensing work described earlier. 

Spatial modelling was undertaken and was underpinned by the 
random forest (RF) data modelling algorithm (Breiman, 2001), specif-
ically the ‘Ranger’ R package implementation (Wright and Ziegler, 
2017). RF is used to model the structural component of the data which is 
the relationship between the target variable and a suite of prediction 
variables. This is followed up by residual modelling via variograms and 
kriging to account for additional spatial variability through the auto-
correlated RF model errors which may or may not exhibit definitive 
spatial patterns. In this typical ‘regression kriging’ modelling approach 
the structural and residual components of the model predictions are 
summed together. Regression kriging models were derived for each 
target variable with the regression component conducted for all depths 
simultaneously whereby soil depth layers were used as a model pre-
dictor variable. Variogram modelling of the RF model residuals was 
performed for each depth interval. For variogram modelling, rather than 
visual observation to determine the best type, we opted to use auto-fitted 
variograms (Hiemstra et al., 2009) where up to 5 different types of 
model (Spherical, Exponential, Gaussian, Matern and Matern with 
Stein’s parametrisations) are tested simultaneously to determine the 
best one for the specific data configuration on hand. For the RF 
modelling we optimised the RF hyperparameter ‘mtry’ (number of 
variables to possibly split in each node of the random forest model) using 
a purpose built cross-validation scheme that is facilitated in the ‘caret’ R 
package (Kuhn et al., 2019). The number of trees to grow was not 
optimised and set to 500 as this was more computationally efficient. 

After the model hyperparameter optimisation, 50 iterations of the 
regression kriging model system were run using a bootstrap data 

resampling system in a similar fashion and purpose as described earlier 
in the soil spectral modelling section. The intent here is to quantify 
prediction uncertainties and to provide model validation diagnostics 
based on data not included in the modelling. We subsequently report the 
NRMSE and CCC indices to assess model goodness of fit. 

The bootstrapped regression kriging modelling system is then used to 
output maps to the same extent and resolution of the proximally sensed 
data. Digital soil attribute maps were produced for the bootstrap 
regression kriging prediction average and the upper and lower 95th and 
5th prediction limits (constituting a 90% confidence interval). 

Method implementation 

To carry out the workflows described in this study, numerous 
bespoke R code scripts were developed. Some of the main R packages 
used in this work include “ranger” (Wright and Ziegler, 2017) for model 
fitting and both “raster” (Hijmans, 2019) and “sp” (Bivand et al., 2013) 
for specific spatial data analysis tasks. Variogram modelling was facili-
tated by the “automap” package (Hiemstra et al., 2009). 

Results and discussion 

Results of the modelling, both soil spectral inference (Table 1) and 
digital soil mapping (Table 2) are presented in a similar way. Along with 
each soil attribute inferred or mapped is a description of whether and 
what data transformation was used in model fitting. For example, with 
each of the soil texture fraction, the isometric log ratio was used, for soil 
organic carbon the natural logarithm was used to normalise the data 
while for pH no data transformation was used at all. Transformation 
used for soil spectral modelling were also used for the digital soil 
mapping, but a check was made, in any case, prior to the spatial 
modelling. We then also show the NRMSE and concordance metrics for 
data being ‘in-bag’ and out-of-bag’ which just means the model good-
ness of fit was performed with data included in model calibration or not. 
The ‘out-of-bag’ assessments will give a better indication of whether 
models are useful or not. The use of the NRMSE metric in this study was 
to assist in providing fair comparisons of the efficacy of models for each 
soil attribute. Values close to 0 indicate very low error while higher 
values indicate increasing levels or error. As our assessments of models 
are normalised by the interquartile range of the input data, it is possible 
to have NRMSE values above 1 which would indicate the model does not 
have any useful predictive skill. The model goodness of fit measures 
were performed on the data in their natural units as this information is 
much more useful for users of the model outputs. 

Soil spectral inference to characterise whole soil cores 

It is a general expectation that model in-bag goodness of fit measures 
are less good compared with out-of-bag, and this is apparent with the 
model outcomes shown in Table 1. Soil texture fractions except for silt 
appear predictable with vis-NIR spectroscopy in this case. Relatively less 
predictable were nitrogen, soil carbon (total and organic), pH and ECEC. 
Available phosphorous and EC were not predictable at all with our data. 
This scale of model predictive ability aligns quite well with previous 
research efforts using vis-NIR for soil spectral inference. For example, 
infrared analysis is well suited for soil carbon and total nitrogen analysis 
because of its sensitivity to the C–H, C–O, and C–N functional groups 
that dominate in organic matter. Similarly, clay mineralogy can be 
readily estimated, too as there are established spectral signatures for 
suites of primary and secondary clay minerals in both the vis-NIR and 
MIR regions (Soriano-Disla et al., 2014), and because of this, attributes 
like cation exchange capacity are relatively well predicted, too. Soil 
texture (at least clay and sand proportions) is also well predicted as 
infrared spectra is sensitive to the surface and solid composition of the 
soil. Attributes related to the soil solution rather than to the chemistry of 
the soil matrix are generally not going to be well predicted using 
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infrared soil spectroscopy (Janik et al. 1998) and this was the case for 
Colwell P and EC. Soil pH on the other had was relatively well predicted 
which is indicative more of the correlation of these attributes with 
others such as soil texture, which in this work was quite well predicted. 

Digital soil mapping 

The relative change in model goodness of fit between in-bag and out- 
of-bag is greater for digital soil mapping compared with those from the 
soil spectral inference. This relationship is due to model selection. 
Random Forest modelling was used for digital soil mapping and does 
tend to deliver very strong model fitting capability based on the cali-
bration or in-bag data. Therefore, it is necessary to assess the model 
using the out-of-bag data because we need to evaluate whether the 
model generalises well. From the results in Table 2, it is observed that 
the out-of-bag NRMSE values for all attributes is under 0.5 indicating 
very satisfactory and skilful spatial models. We did not carry out spatial 
modelling of the attributes: Total carbon, total nitrogen, and EC. In our 
case SOC is highly correlated with total nitrogen and carbon, so in this 
current work mapping on SOC seems appropriate. For EC, as this was not 
that well predicted with soil infrared spectroscopy, we decided not to 
proceed with the digital mapping step. Although Colwell P was also not 
very well inferred from vis-NIR spectroscopy, we carried out the spatial 
model to demonstrate a point of discussion later about certain and un-
certain data. Despite relatively poor vis-NIR spectral model prediction, 
the spatial model of Colwell P is skilful as indicated by lower out-of-bag 
NRMSE and higher concordance. 

Digital soil maps for all the soil attributes summarised in Table 2 can 
be shared upon request to the authors. For each attribute, maps are given 
for each of the output depth intervals:: 0–10 cm, 10–20 cm, 20–40 cm, 
40–60 cm, 60–80 cm, 80–100 cm, 100–120 cm, 120–140 cm, 140–160 
cm, and 160–180 cm. These maps are presented with associated 90% 
confidence upper and lower prediction intervals. 

We reserve a thorough interpretation of the soil-landscape relation-
ships for a separate piece of research and discussion. Other than the 
reliable outcomes of the spatial modelling, these digital soil maps have 
been assessed in an informal manner by expert knowledge associated 

with BARS to verify and confirm general soil patterns across the farm. 
Using the digital mapping of soil pH (1:5 CaCl2) as a discussion 

example, at the whole farm extent, areas from relatively acidic to neutral 
can be observed in the topsoil. With increasing soil depth, some areas of 
acidity persist but there is a general trend of increasing pH with 
increasing soil depth overall. This general pattern of soil pH is already 
well established for the Boorowa region where the farm is situated 
(Hird, 1991), but in this case has been explicitly defined in the spatial 
context using the digital mapping approaches that were implemented. 

A phenomenon that has been observed and documented through the 
cropping zone of south eastern Australia is the occurrence of pH strati-
fication within the top 20 cm of soil (Condon et al., 2021). Cropping 
practices lead to pH stratification where OH- is removed with crop 
biomass and replacement lime is only applied at the surface and not fully 
incorporated via tillage. In addition to this, locally in the region around 
BARS some topsoil A1 and many A2 horizons are naturally acid due to 
the leaching action associated with illuviation and subsurface lateral 
flow conditions moving solutes (OH-), into or across B horizons in 
texture contrast soils. The ubiquitous down profile pH trends occur 
where surface soils are more acid and is fundamentally a function of 
cropping practices and soil age where OH- is stripped from upper layers 
and deposited in lower B horizons over time. It is likely many of the A2 
horizons in texture contrast soils were acidic prior to Pre-European 
settlement. Both processes result in pH stratification, a common 
feature of BARS soils particularly in lower slope positions and in areas 
where water accumulates and A2 horizons are thickest. 

Consequently, pH stratification has had negative impacts on crop-
ping, grazing and mixed farming enterprises across the south eastern 
agricultural region. One of the powerful aspects of the digital soil 
mapping workflow that has been used in this study and could potentially 
be used elsewhere is the ability to detect and delineate phenomena such 
as this pH stratification. This can be done for example through careful 
selection of the depth intervals to be output from the soil depth function 
depth which processes the raw soil profile information. As has been 
established in works such as Filippi et al. (2020) and Roudier et al. 
(2020) methodologies that have been described in this research and 
similar can achieve digital mapping outputs even to 1 cm depth 

Table 1 
Model goodness of fit outcomes from soil infrared spectroscopy for each of the target soil attributes.  

Soil Attribute Data transformation Model in-bag goodness of fit Model out-of-bag goodness of fit   
NRMSE Lin’s Concordance NRMSE Lin’s Concordance 

Clay (%) isometric log transformation 0.35 0.81 0.40 0.76 
Sand (%) isometric log transformation 0.40 0.76 0.46 0.70 
Silt (%) isometric log transformation 0.76 0.39 0.78 0.35 
Total Nitrogen (%) Square root 0.62 0.76 0.75 0.67 
Total carbon (%)  Natural logarithm 0.65 0.82 0.82 0.71 

Soil organic carbon (%) Natural logarithm 0.67 0.77 0.71 0.68 
EC (dS/m) Natural logarithm 1.62 0.56 1.78 0.43 
pH (1:5 H2O) none 0.63 0.49 0.68 0.41 
pH (1:5 CaCl2) none 0.62 0.57 0.71 0.42 
Colwell P (mg/kg) Natural logarithm 1.16 0.67 1.21 0.59 
ECEC (cmol+/kg) Square root 0.77 0.71 0.82 0.67  

Table 2 
Model goodness of fit outcomes from digital soil mapping for each of the target soil attributes.  

Soil Attribute Data transformation Model in-bag goodness of fit Model out-of-bag goodness of fit   
NRMSE Lin’s Concordance NRMSE Lin’s Concordance 

Bulk Density (kg/m3) none 0.21 0.95 0.40 0.83 
Clay (%) isometric log ratio 0.21 0.94 0.42 0.80 
Sand (%) isometric log ratio 0.22 0.95 0.44 0.80 
Silt (%) isometric log ratio 0.22 0.94 0.42 0.79 
Soil organic carbon (%) Natural logarithm 0.17 0.97 0.34 0.87 
pH (1:5 H2O) none 0.16 0.97 0.32 0.86 
pH (1:5 CaCl2) none 0.19 0.95 0.38 0.81 
Colwell P (mg/kg) Natural logarithm 0.15 0.97 0.30 0.88 
ECEC (cmol+/kg) Square root 0.22 0.96 0.43 0.84  
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resolution to a nominated maximum depth. This level of granularity is 
particularly useful for the identification of soil constraints occurrence 
and estimation of soil natural capital stocks, for example, but could be 
computationally prohibitive to apply everywhere even with today’s 
excellent computer capabilities. To demonstrate the capability of DSM 
for granularity of soil characterisation in the vertical dimension, we 
therefore also generated the same set of digital soil attribute maps 
following the workflows described, but at a depth support of 5 cm depth 
intervals between 0–40 cm. 

At the farm scale, it is only possible to see subtle differences between 
maps given the slight change in depth support for the topsoil, i.e., from 
the original 0–10 cm layer to the 0–5 cm layer as shown in Fig. 5. 
However, scaling down to the paddock boundary level of a newly 
established long-term cropping trial at BARS (~11 ha), the usefulness to 
increase the granularity of depth support becomes evident. In addition, 
Fig. 6 shows to 60 cm the digital mapping using the original depth 
support compared to the depth support for every 5 cm to 40 cm in Fig. 7. 
In both Figures, the western side of the bounded field has a lower soil pH 
compared with the eastern side of the field. This surface pH is generally 
higher than the next depth layer below. What we see in Fig. 6 though is 
that there is a clear decrease in soil pH for the 10–20 cm layer and then 
an increase for 20–40 cm, a trend that continues for the 40–60 cm layer. 
From, this original mapping interval representation we might infer that 
there is this phenomenon of pH stratification in the 10–20 cm layer as 
described above for south eastern Australia. However, the interval 
mapping in Fig. 7 shows that this stratification is really occurring be-
tween 5 and 30 cm. This level of depth granularity will help aid decision 
making about how to best ameliorate the soil acidity issue and manage 
the soil’s capability, e.g. whether surface or subsoil incorporation of 
lime should be used, and if subsoil incorporation, then to which specific 
depth. Had the maps in Fig. 6 been used to assist with an amelioration 
plan at BARS, then perhaps the correct treatment and equipment would 
not have been selected, which could potentially have led to inadequate 
amelioration and use of resources. The noteworthy point to make here is 
that the underlying soil data from the soil cores were the same for both 
mapping contexts, and only the data processing procedure was changed. 
The here demonstrated customisation or bespoke digital map production 
ability is a clear point of difference between conventional approaches to 
creating soil maps and marks a shift in the interaction between soil in-
formation and end-users. In our example the bespoke digital soil attri-
bute vertical mapping approach empowered the end users to receive the 
soil information needed to underpin decision making at their own 
specifications. 

General discussion 

Costs of digital soil survey 

We have costed up items performed in this work as if each were 
carried out by commercial operators. For reference though, the proximal 
soil survey and data modelling were carried out internally by CSIRO, 
leaving the soil sampling and laboratory analysis to commercial opera-
tors. The costs for each item are as follows:  

• On-the-go proximal soil survey: AUD$5000 given survey density and 
vehicle speed  

• Soil Sampling: AUD$25,348. Inclusive of all travel and associated 
incidentals  

• Soil analysis: AUD$76,000. For the selected analytes this costs out to 
$200 per sample  

• Soil Core Scanning: AUD$17,500. This is based on labour costs of 
$250 per hour  

• Data Analysis and modelling: AUD$17,500. Labour costs at same rate 
as above 

On a cost per hectare basis, we estimate the cost of this survey to be 
about $640. We would consider these costs to be a capital investment as 
they have fulfilled the task of providing a detailed assessment of soil 
variability across the farm. The usefulness of the established soil infor-
mation infrastructure is that it is very much dynamic in the case that new 
data can be added seamlessly, and new models can be created accord-
ingly. The nature of ongoing costs will be relatively small compared with 
the original capital investment of baselining the soil conditions at BARS. 
However, the value of the information in terms of granularity of detail, 
precision and accuracy will increase significantly. Much of this granu-
larity in terms of both lateral and vertical soil characterisation has been 
driven by the incorporation of soil infrared spectroscopy into the soil 
survey process. Without doubt, soil spectroscopy in terms of measure-
ment error is potentially prone to greater levels of uncertainty compared 
with a laboratory-base wet chemistry analysis (Soriano-Disla et al., 
2014), but this is not always the case as reported in the literature and our 
own spectral predictions of clay and sand for example are demonstrable 
of the power of this digital technology. We discuss issues about mea-
surement errors further on but want to make the point here that had we 
had submitted all soil subsamples to the laboratory for wet chemistry 
analysis to achieve the same digital mapping outcomes we have pre-
sented here, then total costs of the soil analysis would be in the region of 

Fig. 5. BARS maps of soil pH (1:5 CaCl2) output to 0–10 cm and 0–5 cm, respectively. This customisation was enabled through specification of the outputs from the 
soil depth function used to process in available soil profile data. 
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AUD$600,000. Keeping to only traditional soil analysis and not 
advancing with using soil infrared spectroscopy, we may not have 
captured the spatial nor vertical variation of the BARS soils, resulting in 
inferior and even unsuitable outputs. 

Possibilities of the soils spatial data infrastructure 

Before discussing some caveats of the important outcomes from the 
digital soil survey of BARS presented in this work, we want to cover off 
on some of the important features and possibilities of the digital soils 
infrastructure that has been developed. 

Ability to get highly resolved spatial soil data 
Digital soil mapping enables site-specific characterisation of soil 

variability. Subsequently, any farming task related to variable rate, 
precision agriculture, soil natural capital stock accounting or any task 
related to differential management of the farming system can be 
informed and underpinned by outputs from digital soil mapping. 
Moreover, the specificity of the spatial soil information can be leveraged 
in better ways and into richly-designed agricultural simulation models 
which are known to be demanding of detailed soil information such as 
APSIM (Agricultural Production Systems sIMulator; Holzworth et al., 
2018). 

Flexibility of modelling approach to generate outputs to the desired resolution 
and depth support 

The granularity of digital soil mapping outputs is often controlled by 
the grid cell resolution. The selection of this is often the choosing of the 
map producer or user which is often guided by management priorities. 
Too coarse a resolution and spatial variability can get overlooked, while 
too fine a resolution can lead to redundancies or a characterisation of 
spatial variability that is not particularly important to agricultural 
productivity outcomes. Anecdotally, management of a farm field on 10 
m grids is feasible for broadacre cropping systems. Irrespective of what 
is best for which context, the digital soil mapping process can be adapted 
and customised accordingly. As stated earlier, this same customisation 
applies also in our case regarding depth support and the granularity of 
vertical soil variability. Adapting a fine characterisation of soil pH down 
the soil profile, at least in the top 40 or 50 cm is suitable for BARS and 
likely across the region the farm is situated, but this does not mean that 
this approach should be adopted exactly for other soil properties or in 
other regions. This flexibility and bespoke nature to deriving digital soil 
attribute maps is invaluable and provided an enhanced ability to 
manage soils across a variety of contexts, albeit with the same under-
pinning source soil data. Taking this to an operational situation, follow 
up work with regarding the soil moisture mapping across BARS is 
another example of soil map customisation where in the first instance 
the vertical support of the mapping is determined by the sensor depths 
on the soil probe network across the farm. 

Fig. 6. BARS maps of soil pH (1:5 CaCl2) focussed onto the location of the long-term cropping trials (~11Ha). The maps show the pH for the 0–10 cm, 10–20 cm, 
20–40 cm and 40–60 cm depth intervals. 
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Fig. 7. BARS maps of soil pH (1:5 CaCl2) focussed onto the location of the long-term cropping trials (~11Ha). The maps show the pH at 5 cm depth intervals to 
40 cm. 
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Efficiency to update and improve models through time 
It was not demonstrated in this study, but a possibility and increas-

ingly common scenario is to update digital soil maps with the intention 
to improve upon previous iterations. Updating a digital map can take 
various forms that include adapting a new model type to existing data, 
incorporating new data into the modelling that were not available at the 
time of the previous version. This could include new site or soil profile 
data or improved spatial covariate information. Often a new model type 
and additional data could constitute an updated version. Moreover, the 
points described above about contextualising the spatial and vertical 
support of maps would be considered an update or improvement, too. 
This dynamic nature of the soil mapping process can be invaluable, but it 
does also necessitate abled personnel to be on hand and evolve the soil 
information infrastructure, too. In effect there will need to be an ongoing 
resourcing need. While for BARS there is no current field plans to 
explicitly improve upon what has been created to date in terms of whole 
farm soil mapping, soil information is and will continue to be collected 
for various contexts for other projects undertaken there. Such data can 
be used either for a validation in the first instance of the existing 
products where possible, but eventually would be incorporated into 
ongoing mapping work. 

Expansion of predictive suite for via soil spectral model calibrations and 
pedotransfer functions 

The work carried out in what we would consider to be a reconnais-
sance soil survey delivered outputs of the primary attributes investi-
gated. The modality to infer a greater suite of soil attributes in addition 
to the primary ones can be done via processes such as soil spectral 
inference and pedotransfer functions (Van Looy et al. 2017; McBratney 
et al., 2006). Both processes are relatable in that the existing primary 
information on hand can be used to infer other soil attributes that are 
oftentimes very expensive or time consuming (or both) to analyse. For 
example, the measurement of soil carbon fractions which are often used 
to understand soil carbon turnover, or soil moisture and hydraulic 
characteristics which require specialised equipment and long times in 
the field in order just to characterise a limited number of single point 
sites. 

In the case of pedotransfer functions, the general concept is that with 
relatively easier to measure soil attributes, more difficult to measure 
ones can be inferred using empirical calibration with defined model 
structure or type. The relevant soil attributes here for BARS are those 
related to soil moisture which include attributes such as drained upper 
and crop lower limits and infiltration rate. The inputs to predict these 
variables often included soil texture, bulk density, soil carbon and cation 
exchange capacity. The soil hydraulic attributes are particularly 
important for example in the calibration of soil moisture sensors and 
then mapping soil moisture across the farm on a given time step, or for 
predicting crop yields via APSIM. Using published pedotransfer func-
tions such as in Gasch et al. (2017) or Vervoort et al. (2006), these at-
tributes can be defined relatively easily. Obviously, there can potentially 
be limits to using pedotransfer functions as they are known to be rele-
vant to a given geographical context or calibrated on certain subset of 
soils or soil types (Van Looy et al. 2017) making them potentially inef-
fectual in the context where these models are extended too. So naturally, 
some in field validation would be required. Ultimately this cycle of 
estimation and verification would continue (and drawing upon earlier 
discussion about model updating and improvement) until the mapping 
products satisfy their requirements. 

Soil spectral inference may be coupled with pedotransfer functions in 
that spectral models could predict primary soil attributes as has been 
done in this work, and then these predictions are processed through an 
existing pedotransfer function. This is indeed a possibility but one that 
we have not explored yet for BARS. The use case that needs elaboration 
however is the idea of soil spectral model extrapolation, whereby an 
existing model calibrated with some other unrelated data can be 
extended to data pertinent to the BARS data. Data here is the soil vis-NIR 

spectral library and as has already been established, the spectral 
response of a soil specimen can provide a significant amount of infor-
mation about the properties of that soil. If we take the example of vis- 
NIR modelling of soil carbon fraction as demonstrated in Viscarra Ros-
sel and Hicks (2015), and accounting for instrument and soil differences 
through harmonisations and corrections, it is feasible to extend those 
models to the BARS vis-NIR spectral library and others. This work to 
date for soil carbon fraction mapping across BARS is still in process with 
the main task being the verification of the spectral model predictions. 
While some digital mapping of carbon fractions across BARS has been 
done to date, we do not share them in this instance until some further 
checking and verification is performed. 

Ultimately with the use cases around soil moisture and carbon 
fractions, it is intend to illustrate the invaluable nature of the current soil 
information infrastructure for BARS in terms of inferring additional soil 
attributes to what were initially targeted. 

Caveats 

Including depth in spatial modelling 

Work by Ma et al. (2020) demonstrated there are potential issues 
with including some information about depth together with the usual 
suite of predictor variables that are considered in digital soil mapping. 
They found that with certain algorithms such as random forest models 
and other machine learners, that resulting predicted depth function can 
appear stepped rather than continuous. This stepped feature is obviously 
not a pedological feature, but an artefact of the modelling. As this cur-
rent work uses the random forest algorithm within the spatial modelling 
process, without a detailed checking, we would assume there are 
potentially some step artefacts in the soil maps we have produced. Our 
motivation to include some indicator of depth in our spatial models was 
to follow multiple lines of enquiry through trial-and-error which also 
included comparison against models without using depth increments as 
a predictor variable. We found substantial improvements if depth was 
used and are relatively confident, given the nature of our out-bag vali-
dation procedure, that any artefacts will be minimal in our case. The 
advantage of including depth in the spatial model using the modelling 
approach selected is that co-related soil information (hereby the same 
soil attribute at other depths in the same profile) provides useful infor-
mation about what the attribute value may be somewhere else in the 
profile. The other potential advantage of including depth as a predictor 
variable is that the modelling complexity can be reduced significantly. 
Effectively, rather than a model for each targeted depth interval, only 
one would be needed. While we did implement residual variogram 
modelling on a depth-wise basis, the time saving device of reducing the 
number of models to fit allows outputs to be run in a timelier manner. 

Incorporation of soil spectral model uncertainty in spatial predictions 

In this research we have applied spatial models without consider-
ation of measurement errors of the input data. We know from out-of-bag 
validation that the soil spectral models were not without error. More-
over, we were able to quantify prediction uncertainties by expressing the 
true value of each target variable to be within a defined interval which 
we established with 90% confidence. Surprisingly, laboratory measured 
data like spectral model predictions are also prone to measurement er-
rors, though are not reported as frequently. Irrespective of this, we have 
not explored the types of models needed to include this uncertainty into 
the spatial modelling. Some of these model frameworks include filtered 
kriging (Christensen 2011), which is entirely posed within a geo-
statistical modelling theory. Machine learning adaptations to measure-
ment errors have also been investigated in Malone and Searle (2021) and 
Czarnecki et al. (2013). These types of models will be explored in further 
iterations of mapping. For this initial work our first motivation was to 
establish some general workflows and codebase to accomplish a 
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functioning soil data infrastructure for BARS. 
What we can expect by including measurement errors into the spatial 

modelling are smoother looking maps and wider prediction intervals 
(Somarathna et al., 2018). This may affect some of the mapping for 
example Colwell P where spectral predictions were not ideal. Although 
the spatial modelling of Colwell P appeared relatively more accurate, 
this needs to be discounted by the less accurate spectral modelling 
outcomes. We would not expect a significant change in the overall 
spatial pattern, but currently the prediction intervals would be 
misleading i.e., too narrow. Consequently, decisions around P man-
agement would need to be adjusted accordingly. For the other soil at-
tributes investigated we would expect more subtle differences given the 
relatively less spectral model prediction uncertainties. 

Conclusion 

Digital technologies or what Wadoux and McBratney (2021) describe 
as the digital convergence has brought undeniable new capacity to 
analyse and study the soil. This has been demonstrated in this work 
where we have used a suite of field sensing and lab sensing technologies 
coupled with powerful data processing and modelling capability to 
create a suite of comprehensive vertically granular digital soil attribute 
maps for BARS. We detailed a clear set of steps and their associated 
technologies so that this type of work can be extended to other sites and 
contexts. We have likened the costs of the soil survey and digital soil 
map creation as a capital investment into improved decision support 
capabilities which enables site-specific management to improve pro-
ductivity outcomes which can be realised through such things as precise 
identification and delineation of soil constraints and opportunities, 
leading to more effective outcomes for securing soils. 

The major shift in the creation of the ‘farm soil map’ amidst the 
digital convergence is not just the improved management-specific res-
olution of soil information and soil attribute specificity, but an ability to 
create customised or bespoke mapping to suit a particular purpose or 
assessment as demonstrated in the real example of soil pH mapping. 
Moreover, the digital soils infrastructure and workflows can also be 
readily updated, with the view to improving them. We also think the 
ability to analyse the collected data such as from the on-the-go proximal 
soil sensing to plan soil survey incorporates a collaboration between 
expert soil survey expertise and data driven decision making, bringing 
together both analogue and digital concepts. 
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