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Thesis Summary 

This thesis is concerned with practicable methodologies for delivering 

comprehensive spatial soil information to end-users. There is a need for relevant 

spatial soil information to complement objective decision-making for addressing 

current problems associated with soil degradation; for modelling, monitoring and 

measurement of particular soil services; and for the general management of soil 

resources. These are real-world situations, which operate at spatial scales ranging 

from field to global scales. As such, comprehensive spatial soil information is 

tailored to meet the spatial scale specifications of the end user, and is of a nature that 

fully characterises the whole-soil profile with associated prediction uncertainties, and 

where possible, both the predictions and uncertainties have been independently 

validated. ‘Practicable’ is an idealistic pursuit but nonetheless necessary because of a 

need to equip land-holders, private-sector and non-governmental stakeholders and, 

governmental departments including soil mapping agencies with the necessary tools 

to ensure wide application of the methodologies to match the demand for relevant 

spatial soil information. Practicable methodologies are general and computationally 

efficient; can be applied to a wide range of soil attributes; can handle variable 

qualities of data; and are effective when working with very large datasets.  

In this thesis, delivering comprehensive spatial soil information relies on 

coupling legacy soil information (principally site observations made in the field) with 

Digital Soil Mapping (DSM) which comprises quantitative, state-of-the-art 

technologies for soil mapping. After the General Introduction, a review of the 

literature is given in Chapter 1 which describes the research context of the thesis. The 

review describes soil mapping first from a historical perspective and rudimentary 

efforts of mapping soils and then tracks the succession of advances that have been 

made towards the realisation of populated, digital spatial soil information databases 

where measures of prediction certainties are also expressed. From the findings of the 

review, in order to deliver comprehensive spatial soil information to end-users, new 

research was required to investigate: 1) a general method for digital soil mapping the 

whole-profile (effectively pseudo-3D) distribution of soil properties; 2) a general 

method for quantifying the total prediction uncertainties of the digital soil maps that 

describe the whole-profile distribution of soil properties; 3) a method for validating 

the whole-profile predictions of soil properties and the quantifications of their 
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uncertainties; 4) a systematic framework for scale manipulations or upscaling and 

downscaling techniques for digital soil mapping as a means of generating soil 

information products tailored to the needs of soil information users. Chapters 2 to 6 

set about investigating how we might go about doing these with a succession of 

practicable methodologies. 

Chapter 2 addressed the need for whole-profile mapping of soil property 

distribution. Equal-area spline depth functions coupled with DSM facilitated 

continuous mapping the lateral and vertical distribution of soil properties. The spline 

function is a useful tool for deriving the continuous variation of soil properties from 

soil profile and core observations and is also suitable to use for a number of different 

soil properties.  Generally, mapping the continuous depth function of soil properties 

reveals that the accuracy of the models is highest at the soil surface but progressively 

decreases with increasing soil depth.  

Chapter 3 complements the investigations made in Chapter 2 where an empirical 

method of quantifying prediction uncertainties from DSM was devised. This method 

was applied for quantifying the uncertainties of whole-profile digital soil maps.  

Prediction uncertainty with the devised empirical method is expressed as a prediction 

interval of the underlying model errors. The method is practicable in the sense that it 

accounts for all sources of uncertainty and is computationally efficient. Furthermore 

the method is amenable in situations where complex spatial soil prediction functions 

such as regression kriging approaches are used.  

Proper evaluation of digital soil maps requires testing the predictions and the 

quantification of the prediction uncertainties. Chapter 4 devised two new criteria in 

which to properly evaluate digital soil maps when additional soil samples collected 

by probability sampling are used for validation. The first criterion addresses the 

accuracy of the predictions in the presence of uncertainties and is the spatial average 

of the statistical expectation of the Mean Square Error of a simulated random value 

(MSES). The second criterion addresses the quality of the uncertainties which is 

estimated as the total proportion of the study area where the (1-α)-prediction interval 

(PI) covers the true value (APCP). Ideally these criteria will be coupled with 

conventional measures of map quality so that objective decisions can be made about 

the reliability and subsequent suitability of a map for a given purpose.  It was 

revealed in Chapter 4, that the quantifications of uncertainty are susceptible to bias as 

a result of using legacy soil data to construct spatial soil prediction functions. As a 
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consequence, in addition to an increasing uncertainty with soil depth, there is 

increasing misspecification of the prediction uncertainties.  

Chapter 2, 3, and 4 thus represent a framework for delivering whole-soil profile 

predictions of soil properties and their uncertainties, where both have been assessed 

or validated across mapping domains at a range of spatial scales for addressing field, 

farm,  regional, catchment,  national, continental or global soil-related problems. The 

direction of Chapters 5 and 6 however addresses issues specifically related to 

tailoring spatial soil information to the scale specifications of the end-user through 

the use of scale manipulations on existing digital soil maps.  What is proposed in 

Chapter 5 is a scaling framework that takes into account the scaling triplet of digital 

soil maps—extent, resolution, and support—and recommends pedometric 

methodologies for scale manipulation based on the scale entities of the source and 

destination maps.  Upscaling and downscaling are descriptors for moving up to 

coarser or down to finer scales respectively but may be too general for DSM. 

Subsequently Fine-gridding and coarse-gridding are operations where the grid 

spacing changes but support remains unchanged. Deconvolution and convolution are 

operations where the support always changes, which may or may not involve 

changing the grid spacing. While disseveration and conflation operations occur when 

the support and grid size are equal and both are then changed equally and 

simultaneously.  

There is an increasing richness of data sources describing the physical 

distribution of the Earth’s resources with improved qualities and resolutions. To take 

advantage of this, Chapter 6 devises a novel procedure for downscaling, involving 

disseveration. The method attempts to maintain the mass balance of the fine scaled 

predictions with the available coarse scaled information, through an iterative 

algorithm which attempts to reconstruct the variation of a property at a prescribed 

fine scale through an empirical function using environmental or covariate 

information. One of the advantages associated with the devised method is that soil 

property uncertainties at the coarse scale can be incorporated into the downscaling 

algorithm. 

Finally Chapter 7 presents a synthesis of the investigations made in Chapters 2 to 

6 and summarises the pertinent findings. Directly from the investigations carried out 

during this project there are opportunities for further work; both in terms of 

addressing shortcomings that were highlighted but not investigated in the thesis, and 
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more generally for advancing digital soil mapping to an operational status and 

beyond. 
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General introduction 
Soils and the functions they perform have and will probably always underpin human 

existence. This is because humans derive many direct and indirect services from 

soils, some of which include: (1) the production of food and fibre; (2) harmonising 

and regulating the cycling of nutrients; for example, carbon, nitrogen and 

phosphorous (Carton and Jarvis 2001; Loveland and Webb 2003); (3) playing a 

critical role in gas and climate regulation (Costanza et al. 1997); (4) storing of water, 

regulation of water quality and supply; (5) storage of biodiversity and genetic 

resources; (6) provisioning of cultural services; (7) provisioning of foundations for 

housing, transportation, and engineering structures.  

However, humans are a dominating force on Earth (Crutzen 2002), where 

currently between 39-50% of the land surface has been transformed or degraded as a 

result of human activities over the past 300 years (Vitousek et al. 1997). In many 

parts, for example Africa where agriculture is practised without adequate fertilisers, 

the soils have been stripped of vital nutrients to support plant growth (Sanchez 

2010); the critical function of soils providing food and fibre are threatened as a 

result. Degradation of soils through erosion, salinity and pollution mean that soils 

can not optimally provide the functions to which they are best suited. With a global 

human population expected to reach 10 billion by the end of this century (Crutzen 

2002), the ability of the soils to optimally perform their functions will continually be 

more threatened.  

Objective decision making is required for addressing soil degradation; for 

modelling, monitoring and measurement of particular soil services; and for general 

management of soil resources. There is clearly a need for relevant spatial soil 

information to complement these efforts. Spatial soil information denotes maps and 

associated databases which provide explicit, quantitative expressions of soil property 

variation for a given area. Soil properties may include organic carbon content, soil 

pH, and soil texture among others as well as functional soil properties such as 

available water capacity and carbon density. This information may be used directly 

for assessing particular soil functions or used indirectly as a proxy to predict more 

difficult-to-measure soil functions. Whatever the case, the audience of soil 

information users is not limited to soil scientists but includes climatologists, 

ecologists, hydrologists, geologists, and engineers amongst others who require 



General Introduction 
 

4 
 

thematic (soil property) spatial soil information at a range of spatial scales, and on 

different supports (areal or point). Typical scales or resolutions at which spatial soil 

information might be needed are < 20m, 20m -2km, or >2km to respectively address 

local/field, regional/catchment, and national/continental/global questions (McBratney 

et al. 2000). The key objective of this project therefore is to set forth practicable 

methodologies for delivering comprehensive spatial soil information that is tailored 

to the requirements of the information users; as opposed to the common situation of 

soil information users making do with that which is available. 

Comprehensive spatial soil information 

The creation and population of spatial soil information systems can be achieved by 

Digital Soil Mapping (DSM; McBratney et al. 2003). DSM is a quantitative 

framework for prediction of soil properties (and soil classes), which is rooted in 

Jenny’s soil factorial equation (Jenny 1941); the basis of the soil landscape 

modelling paradigm (Hudson 1992). DSM entails exploiting the availability of 

digital information that describes the environment (in other words, soil formation 

factors) to generate predictive models based on observed data recorded at sparse 

locations to derive inference at unvisited locations. Digital soil maps are the visual 

product and are displayed as a gridded raster image. The raster also acts a storage 

format of a densely populated spatially explicit soil information database.  

Comprehensive soil information systems require more than just predictions of 

soil properties made within a DSM framework. The Encarta English dictionary 

defines comprehensive as something that includes many details or aspects. 

Synonyms for comprehensive include: across-the-board, extensive, widespread, 

wide-ranging and all-embracing. With this terminology we might expect 

comprehensive spatial soil information to be tailored accordingly to the scale and 

support for optimally addressing a particular question and to include estimates of 

uncertainties associated with the predictions. We might also expect to have some 

metric to describe how reliable the predictions and the quantifications of the 

uncertainties are. Furthermore comprehensive spatial soil information systems should 

also describe soil variability in terms of the whole soil profile or in other words the 

3-dimensional distribution of soil properties. Advances in DSM are required and 

while techniques of mapping the whole profile distribution of soil properties is a 

relatively new area of research (McBratney et al. 2011), methodologies for 
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quantifying the uncertainties in addition to techniques for assessing the quality of the 

whole-profile predictions and their uncertainties at a range of scales have not really 

been explicitly developed before. This project will set forth some practicable 

methodologies for achieving these objectives.  

Practicable methodologies 

Practicable is defined as something that is doable and capable of being carried out 

or put into effect. Practicable methodologies need to jointly consider (1) the 

availability and quality of soil information for producing spatial soil information 

systems; (2) the expertise of the practitioners producing the spatial soil information; 

(3) the validity of modelling techniques and adherence to statistical assumptions; (4) 

and the computational effort required to run models.   

The soil information required for DSM often involves using legacy soil 

information collected during conventional soil survey. This information is often 

sparse and more often than not does not constitute a proper statistical sample of the 

region to be mapped. The soil information itself ranges in quality and may contain 

uncertainties from various sources which together means this data is often sub-

optimal for implementing advanced statistical methods. Furthermore, implementation 

of complex statistical models for example, Markov Chain Monte Carlo (MCMC) 

methods (Minasny et al. 2011), conditional stochastic simulations (Goovaerts 1997), 

or Residual Maximum Likelihood- Empirical Best Linear Unbiased Predictor 

(REML-EBLUP; Lark et al. 2006) may often be prohibitive because strict statistical 

assumptions need to be adhered and they also require significant computational 

resources when working with large datasets. This makes mapping at fine resolutions 

or at global, continental and national scales a difficult task and not at all practicable 

in the sense of the time, efforts and expertise required.  

DSM has now moved on from a research phase to one where it is operational and 

is being used to address real world problems that require relevant soil information to 

address them (Sanchez et al. 2009; Grunwald et al. 2011). This does not mean that 

practicable methodologies are sub-optimal; rather they are general and can be 

implemented more-or-less easily given some training and a moderate level of 

expertise. These general methods can handle a wide range data types in terms of 

quality, are applicable for a number of soil properties and generate desirable outputs 
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regardless of the density of observed legacy soil data. Furthermore, the time to 

generate outputs should not be a burden to prohibit their use.  

The aims of this project are to: 

1. Develop a general method for digital soil mapping of the whole-profile 

distribution of soil properties 

2. Develop an empirical method for quantifying the soil property prediction 

uncertainties within a digital soil mapping framework 

3. Develop a simple method and additional criteria for validating whole-profile 

predictions of soil properties and the quantifications of their uncertainties. 

4. Develop a systematic framework for scale manipulations or upscaling and 

downscaling techniques for digital soil mapping as a means of generating soil 

information products tailored to the needs of soil information end-users. 
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Soil mapping is one of the pillars to the challenge of sustainable development. 

[Jeffrey Sachs 2009] 
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Chapter 1  

Context of research: a review of the literature 

1.1. Introduction 

There is a well documented history of human interaction with soils that dates back to 

very early civilisation with the move from nomadic lifestyles to sedentary agriculture 

(Brevik and Hartemink 2010). Early humans saw soils as a provider of food and fibre 

and in the beginning, likely used a trial-and-error approach to determine the best 

places to farm. Even at this early stage of human civilisation much thought and 

possibly wonderment would have been given to the seemingly erratic variation of 

soils from one place to another. The rudimentary knowledge gained from observing 

these variations in soils possibly began the documentation and description of soils 

with the intention of describing and delineating those that were beneficial or 

detrimental for agriculture.  

In present times our fascination with soils has not waned. In fact we view soils as 

providing much more than just our food and fibre and hence place probably more 

value on them for sustaining life and ecosystem functioning (Costanza 1997). 

Documenting and describing how soils vary across the Earth’s land surface has 

advanced significantly from those rudimentary beginnings with many developed 

countries now having detailed inventories of soil resources at relatively fine scales 

(Cook et al. 2008). Even on a global scale, there are coarse representations that 

describe how soils vary from one place to another for the entire globe (Grunwald et 

al. 2011). The documentation of how soil varies generally comes in the form of 

maps, soil survey reports and recorded laboratory and field descriptions.  

This review will document the role that soil inventory and soil mapping has had 

for complementing the management of soil resources. As it stands now, soil mapping 

is essential for planning and management, and makes decision making an objective 

process. The timeline begins from early history to the development of soil survey 

programs that began in the 19th century to new developments in soil mapping 

particularly in the digital form. Soil maps have evolved from representing soil 

variability in finite circumscribed regions as discrete tessellations of soil classes- 

which constitute a general-purpose classification; through to continuous 
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representations of soil property variation with associated uncertainties at all manner 

of spatial scales. This progression has been facilitated by the introduction of 

computers and advanced modelling techniques. Furthermore, an awareness of soils 

as critical for performing life-sustaining and ecosystem functions has seen an 

increased need for more detailed and relevant soil information; more advanced than 

what conventional soil maps can provide. The review will also address areas of soil 

mapping that require advancement in order to meet the increasingly sophisticated 

demands for comprehensive, relevant and tailored soil information. The subsequent 

chapters of this project will then explicitly detail how we might go about doing this 

with a practicable suite of methodologies.  

1.2. Early mapping of soils 

Much of the documented early history of soil mapping is referenced from Brevik and 

Hartemink (2010) where there is more detailed discussion in the context of the 

historical development of soil science. The earliest known soil maps as we know 

them today originated during the early 18th century in Europe where individual 

landholdings would prepare maps with notations such as fields for wheat, hemp or 

grapes. Krupenikov (1992) in Brevik and Hartemink (2010) detailed that land survey 

maps made in Russia in the 1760s reported on the quality of soils in various 

locations. During this time in Germany, soil mapping was also extensively used for 

taxation purposes and valuation of land. In fact, prior to the 18th century in Europe 

there was a general recognition of a direct relationship between soils and 

governments, where soils were believed to determine the economic vitality, 

governance, and national character of a country (Krupenikov 1992). The 

documentation of soils information in some form would have at least been necessary 

for those countries and regions interested in advancing their economic status.  

Nineteenth century geologists and geological surveyors probably were the first to 

really initiate what is referred to now as the soil-landscape paradigm that states that 

soils are characterised as a function of parent material, climate, organisms, relief and 

time (Brown 2006, Hudson 1992). Early soil maps in the USA were made by state 

geologic surveys, for example the soil map of Massachusetts published in 1841 

(Aldrich 1979 in Brevik and Hartemink 2010) and the 1882 soil map of Wisconsin 

(Coffey 1911 in Brevik and Hartemink 2010). The geologists however delineated 
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maps according only to geologic formation, lithology, and type of surficial deposits. 

Soil information was usually provided in an accompanying report and sometimes as 

independent soil maps (Brown 2006). The geologists were thus only able to realise 

the geologic and physiographic factors of parent material, topography and age for 

understanding and deciphering soil variability. It was not until the late 19th century 

that Russian naturalist V. V. Dokuchaev added the geographic factors of climate and 

vegetation to the geologic and physiographic factors. Dokuchaev’s efforts virtually 

defined the framework of all subsequent soil mapping efforts from then on (Brown 

2006). Jenny (1941) formalised these concepts with the derivation of the famous 

clorpt equation, intended as a mechanistic model for soil development: 

𝑆𝑆 = 𝑓𝑓(𝑐𝑐𝑐𝑐, 𝑜𝑜, 𝑟𝑟,𝑝𝑝, 𝑡𝑡) 

where S stands for soil, cl represents climate, o represents organisms including 

humans, r represents relief, p represents parent material, and t represents time. 

Authors have argued Jenny’s state factor model is virtually mathematically 

unsolvable (Huggett 1975). However, since this Russian-originated system of soil 

study has been developed, it has been used by numerous soil surveyors all over the 

world as a conceptual framework for understanding the factors that may be important 

for understanding soil variability across a region. It formed the basis of the national 

soil survey program in the United States which began in 1899 to assist frontier land 

development and planning (Simonson 1989). In the early to mid 20th century other 

countries followed with the development of detailed soil mapping programs to which 

Simonson (1989) describes with details. 

1.3. Mapping soil spatial variation 

Soil is often described as mantling the land more-or-less continuously with the 

exception being where there is bare rock and ice (Webster and Oliver 2006). As 

McBratney et al. (1992) describes, if we could measure all the properties of soil at all 

points in any region and then observe all the properties in their individual character 

spaces, there would each be a cloud of points with uneven density but without really 

sharp breaks. Meaning that, due to the complexity of soils and the complexity of 

landscape development, rapid changes in soil properties over short distances is 

generally an exception rather than a rule.  
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Nevertheless, our understanding of soil variation across any particular region 

derives from a small number of observations made in the field. Predictions are made 

at unobserved locations based on the properties of the soils that were observed at the 

specific locations to make a map of soil distribution across a mapping domain. There 

are two principal approaches for making predictions of soil at unobserved locations. 

The first of which divides the population of soil into more-or-less discrete classes. In 

the spatial context the classes are subdivisions of finite circumscribed regions of 

‘like’ soils conforming to some general-purpose classification (Heuvelink and 

Webster 2001). The second approach treats soils as a suite of continuous variables 

that seeks to describe the way they vary across land (Heuvelink and Webster 2001). 

This approach is necessarily quantitative, as it requires numerical methods for 

interpolation between the locations of actual soil observations.   

1.3.1. Conventional soil mapping 

Because of its roots in geological survey and biological taxonomy, virtually all of the 

national soil survey programs carried out across the world during the 20th century 

mapped the distribution of soils using the discrete boundary approach. A number of 

authors including Simonson (1989), Arnold (2006) and Hewitt et al. (2008) have 

written exhaustively about the techniques and procedures required to make a soil 

map with this approach. It first entails direct observation of ancillary data (which 

includes aerial photos, geology, vegetation and topographic maps) and soil profile 

characteristics. Secondly, the observations of the soil characteristics are incorporated 

into a conceptual model that is used to infer soil variation. The conceptual model is 

primarily implicit which relies on the tacit knowledge of the soil surveyor (Hudson 

1992). The third step involves applying this conceptual model across the survey area 

to predict at unobserved locations. Generally less than 0.001% of the survey region is 

actually observed (Burrough et al. 1971). The conceptual model is then transformed 

into a cartographic model (choropleth map), by drawing map unit boundaries on 

aerial photographs, showing the survey region tessellated into spatial classes (Scull et 

al. 2003). These classes constitute a general purpose classification that may be the 

classes of an established soil classification system or one based on experience and 

local landscape features (Webster 1977, Butler 1980).   
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1.3.2. Drawbacks of conventional soil mapping 

Conventional soil mapping is based on the presumption that soil properties are 

homogeneous within each polygon and sharp breaks are assumed at the polygon 

boundaries (Heuvelink and Huisman 2000). Burrough et al. (1997) labelled this 

mapping concept the double-crisp model because the identified soil groups are 

supposed to be crisply delineated in both taxonomic space (the space defined by the 

soil properties) and geographic space (defined by the map unit boundary). 

Unfortunately this soil mapping concept is at odds with the continuous nature of soils 

and has often been questioned by numerous authors; examples include Webster and 

De La Cuanalo (1975), Nortcliff (1978) and Nettleton et al. (1991). As a model for 

describing soil variability, the double-crisp is inadequate because it ignores the 

continuous spatial variation of both soil-forming processes and the soils themselves. 

Another criticism levelled at conventional soil mapping is that it is conducted in a 

heuristic manner, requiring a dependence upon tacit knowledge of the soil surveyor 

that is generally unfalsifiable and therefore unverifiable in any objective sense 

(Hewitt 1993, Lagacherie et al. 1995).  

For communicating and delivering comprehensive soil information to clients, 

sophisticated use of conventional soil maps is limited. Because of the implicit 

assumptions this approach has for explaining soil variability, the information is not 

suitable for quantitative studies; the language used to describe soils is abstract with a 

lot of technical jargon that are qualitative in nature (Hartemink et al 2008). The 

inaccuracies, imprecision and static nature of the maps are major drawbacks, as is the 

common situation of mapping scale which is seldom useful for addressing a 

particular question (Hartemink et al. 2008). The cost and time required for making 

soil maps is a slow and expensive process making it a prohibitive exercise to tailor 

maps of this kind to suit a targeted purpose. Furthermore, because the cartographic 

model uses polygons it is difficult to integrate this soil information with grid based 

forms of earth resource data (e.g. digital elevation models, satellite imagery and 

climate data).    

1.3.3. Continuous and quantitative representations of soil variability 

With the introduction of modern computers and development of statistical methods 

for soil science from around the 1960s there began an emphasis on treating the 
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descriptions of soil variability on a more continuous and quantitative basis 

(Heuvelink and Webster 2001).   

1.3.3.1. Fuzzy sets 

One of the advances was a generalisation of the double-crisp model which could be 

facilitated by using fuzzy sets. Fuzzy set theory (or fuzzy logic) was first developed 

by Zadeh (1965) as a method for allowing the matching of individuals to be 

determined on a continuous scale instead of a binary or nominal scale. Fuzzy sets are 

generalisations of discontinuous classes where the indicator function of crisp set 

theory, with values 0 or 1, is replaced by the membership function of fuzzy set 

theory, with values in the range 0 to 1 (McBratney and de Gruijter 1992). In other 

words, all individuals of a set share the properties defined for the set at certain 

degrees, which can range from 0 to 1. McBratney et al. (1992), McBratney and de 

Gruitjter (1992), Odeh et al. (1992), Lagacherie et al. (1997) and Grunwald et al. 

(2001) are a few notable examples which provide an overview of the applications of 

fuzzy sets in soil science. Examples of fuzzy sets for numerical classification and 

mapping are discussed as well as other applications such as for land evaluation, 

modelling and simulation of soil processes, fuzzy soil geostatistics, soil quality 

indices, and fuzzy measures of imprecisely defined soil phenomena. Though useful, 

fuzzy set theory have not been widely adopted for soil mapping (Grunwald and 

Lamsal 2006). One reason is possibly the  of difficulty in interpreting the outputs. 

For example, instead of one map, there are potentially many for a single region. 

Furthermore, the unsupervised nature of the clustering algorithm and the requirement 

of sizeable datasets to generate meaningful results are additional reasons why fuzzy 

set theory has not been widely adopted in soil mapping. 

1.3.3.2. Geospatial models 

Soil classification systems and the practice of mapping soils have developed side by 

side since soil survey programs began in the early and mid 20th century across the 

world (Brown 2006). The language instilled in soil classifications and descriptions 

thereof have been suitable for communicating soils information amongst people with 

knowledge of soils, regardless of the flawed assumptions of conventional mapping. 

Nevertheless, communicating soils information to non-soil science minded people 

(but who have an interest and need for soils information) has proven difficult because 
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(1) of abstract technical jargon, and (2) they have a preference for soil information 

that describes the variability of soil properties across a survey region (Sanchez et al. 

2009). Mapping the spatial variability of soil properties requires the use of geospatial 

prediction models as well as incorporating gridded or raster-based data models to 

make predictions onto and display maps (thus a trend away from the polygon data 

model).  

Geospatial models predict soil attributes at un-sampled locations (such as 

regularly arranged grid cell nodes) largely by interpolation from observations 

distributed throughout a mapping region (McBratney et al. 2011). Soil attributes 

mean soil properties such as those including soil texture, soil organic carbon content, 

soil pH and other like properties. Soil attributes also includes soil classes, and as 

McBratney et al. (2003) reviewed, about 30% of studies that applied geospatial 

models for mapping soil attributes have predicted soil classes (70% predicted soil 

properties). 

The first purely geospatial approaches were almost entirely based on 

geostatistics- a regionalised variable theory developed in the 1960s and 70s by 

French mathematician and geologist Georges Matheron. A precursor to geostatistics 

however was trend surfaces that required fitting some form of polynomial equation 

through soil (or environmental) attribute values (Grunwald 2006). Other purely 

geospatial models focused on modelling short-range (local) variations such as nearest 

neighbours, inverse distance weighting, and splines of which have been described in 

various forms by Laslett et al. (1987) and Burrough and McDonnell (1998). All these 

purely spatial approaches (i.e. they don’t depend on any understanding of soil 

formation factors) for soil attribute mapping arose due to the fact that quantitative 

variables describing soil forming factors were not available (McBratney et al. 2011). 

This type of information was to come in the future however. 

1.3.3.3. Geostatistics 

Burgess and Webster (1980) were one of the first to use kriging, the practical 

application of geostatistics for soil attribute mapping. Many contributions detailing 

geostatistics and the underlying theory for soil scientists been written with notable 

works from Burrough (1993), Goovaerts (1999) and Webster and Oliver (2001).  

Geostatistics provides a meaningful framework for mapping soil attributes 

because it treats observations as random variables. This concept works because soil 
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as it varies continuously, is the result of a complex interaction of physical, chemical, 

and biological processes that no description of it (soil) is complete or without error. 

Such variation of soils could be described as random, even chaotic (Webster 2000) 

and geostatistics provides the necessary tools that allow us to treat the variation of 

objects (in this case soil attributes) as random variables. By adopting the stochastic 

view, at each point within a mapping domain, there is not one value for an attribute, 

but a whole set of values. For example, at a location x0, a predicted soil attribute S is 

treated as a random variable with a mean (µ), variance (σ2), and a cumulative 

distribution function (cdf) (Webster and Oliver 2001). Thus the set of random 

variables at each node in the mapping domain 𝑆𝑆(𝑥𝑥1), 𝑆𝑆(𝑥𝑥2),𝑆𝑆(𝑥𝑥3) … . 𝑆𝑆(𝑥𝑥𝑛𝑛), 

constitutes one realisation of a random function or stochastic process.  

Maintenance of the “law of geography” is integral to geostatistics which says that 

nearby things tend to be more alike than those far apart. This spatial auto-correlation 

is described by something called the variogram. Variograms measure the spatial 

auto-correlation of phenomena such as soil properties using semi-variance 

(McBratney and Pringle 1999). The average variance between any pair of sampling 

points (calculated as the semi-variance) for a soil property S at any vector of distance 

h apart can be given by the formula (Webster and Oliver 2001): 

𝛾𝛾(ℎ) =  
1

2𝑚𝑚 (𝐡𝐡)
� {𝑠𝑠(𝐱𝐱𝑖𝑖) − 𝑠𝑠(𝐱𝐱𝑖𝑖 + 𝐡𝐡)
𝑚𝑚  (𝐡𝐡)

𝑖𝑖=1

}2 

 
[1.3.1] 

where 𝛾𝛾(ℎ) is the average semi-variance of the soil property, m is the number of 

pairs of sampling points s is the value of the property S, x is the coordinate of the 

point, and h is the lag (separation distance of point pairs). Thus in accordance with 

the “law of geography”, in a ‘normal’ situation, points closer together show smaller 

semi-variance, whereas pairs of points farther away from each other should display 

larger semi-variance. A variogram is generated by plotting the average semi-variance 

against h. Various models can be fitted to the data to describe the variogram; four of 

the more common ones are the linear model, the spherical model, the exponential 

model, and the Gaussian model (Burrough 1993). Once an appropriate variogram has 

been modelled it is then used for distance weighted interpolation (kriging) at 

unvisited locations.  
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Since the initial use of geostatistics in the 1980s for soil mapping, numerous 

developments and refinements have extended the basic principles. One of the 

developments was co-kriging where early in the development of soil geostatistics it 

was recognised that soil could be better predicted if denser sets of secondary 

variables that were spatially cross-correlated with the primary soil attribute were 

available (see McBratney and Webster 1983 for an early example). Other forms of 

kriging have also evolved to either deal with non-normality (lognormal kriging, 

disjunctive kriging, indicator kriging), whereas others addressed varying trend or 

drift (universal kriging, kriging with external drift, regression kriging; Heuvelink and 

Webster 2001); all of which deal with continuous soil properties or classes, and can 

give estimates on support that have some defined area (blocks) or points. Moreover 

the application of geostatistical methods provides a quantitative measure of 

uncertainty through the kriging prediction error, which is useful for gauging the 

reliability and accuracy of the predicted map (Goovaerts 1999). Geostatistical 

developments have evolved with the development of Geographic Information System 

(GIS) technologies and with the availability of secondary data sets to describe the 

spatial distribution of soil forming factors. One major limitation of geostatistical 

approaches is the large amount of data required to define a meaningful model of 

spatial autocorrelation that is often not available. This is because the soil information 

used for these methods often comes from legacy observations carried out during soil 

survey for the original purposes of conventional soil mapping that collectively are 

often sparsely populated datasets (Burrough et al. 1971).   

1.3.3.4. Multivariate geospatial models 

The unification of concepts from Jenny’s factorial soil-landscape model and purely 

geostatistical models was developed during the early 1990s. This represented an 

alternative spatial prediction strategy to map the distribution of soil attributes. 

Original applications of this work first began by using Jenny’s factorial model in an 

explicit spatial prediction framework. While McBratney et al. (2011) cites earlier 

studies from the 1940s, 60s, and 70s as being precursors to the approach, it probably 

wasn’t until the advent of GIS coupled with dissemination of gridded information 

sources which described soil forming factors (e.g. from digital elevation models, 

climate data and remote sensing imagery) did wide application of the approach really 

get under way.  



Chapter 1 - Context of research: a review of the literature 
 

22 
 

The idea is that in order to make a map describing the distribution of a soil 

attribute across a given spatial domain, soil observation points are intersected with 

layers of secondary or environmental data; a model of some structure is fitted to 

describe the relationship between the soil observations and secondary data. This is 

followed by using the fitted model to predict at all locations (grid cell nodes of a 

raster) of the mapping domain. This approach is quantitative and relies on the 

necessary assumption that the soil observations are correlated with the secondary 

data. Subsequently, McKenzie and Austin (1993) termed the spatially explicit 

factorial approach as “environmental correlation”. Some of the first examples of this 

approach were conducted by Moore et al. (1993) who used terrain attributes derived 

from a DEM (15m resolution) to predict A-horizon thickness and pH for a region in 

Colorado, USA. Skidmore et al. (1991), Bell et al. (1992), Odeh et al. (1994), 

Lagacherie and Holmes (1997) and McKenzie and Ryan (1999) are well known 

pioneering studies of what will be referred to for now as the environmental 

correlation approach for predicting soil properties or classes.  

It was during the mid 1990s that there came the realisation of a similarity 

between the geostatistical kriging approach and the environmental correlation 

approach and combined the two methods. The combinatorial approach became 

generically known as regression kriging (Odeh et al. 1995) which is a analogous to 

universal kriging (Stein and Corsten 1991), or kriging with external drift 

(Wackernagel 1998) or even kriging after de-trending (Goovaerts 1999). The 

difference between these geostatistical approaches with the generic regression 

kriging method is that they allow only for linear relationships to be derived between 

the soil attribute of interest and the secondary data. Nevertheless the approach entails 

fitting a model between the observed soil attribute data and the secondary data 

describing Jenny’s soil forming factors. Then kriging is performed on the residuals of 

the model fit, with the view that any spatial autocorrelation of the residuals can be 

captured as a means of improving the overall prediction of the target soil attribute. In 

practice the regression model prediction and the kriged residual are added together 

which terminates into a final prediction. 

1.3.3.5. Digital soil mapping 

These earlier geostatistical and environmental correlation approaches were 

generalised and formalised into the Digital Soil Mapping (DSM) framework 
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described by McBratney et al. (2003). Earlier work by Bishop et al. (2001) were 

probably the first to coin the term ‘Digital Soil Mapping’ however. Scull et al. (2003) 

also came up with a similar type of framework which they labelled ‘Predictive Soil 

Mapping’. The DSM approach uses the clorpt formulation of Jenny (1941) not for 

explanation but for empirical quantitative descriptions of relationships between soils 

and spatially referenced environmental data, with a view of using these as soil spatial 

prediction functions (McBratney et al. 2011). This is called the “scorpan” model or 

the scorpan-SSPFe method, meaning a framework for soil mapping based on 

scorpan and Soil Spatial Prediction Functions (SSPFs) and spatially auto-correlated 

errors (e) (McBratney et al. 2003). The scorpan model is written as: 

𝑆𝑆𝑐𝑐[𝑥𝑥,𝑦𝑦, ~𝑡𝑡] or 𝑆𝑆𝑝𝑝[𝑥𝑥,𝑦𝑦, ~𝑡𝑡]  

= 𝑓𝑓(𝑠𝑠[𝑥𝑥, 𝑦𝑦, ~𝑡𝑡] , c[𝑥𝑥,𝑦𝑦, ~𝑡𝑡], 𝑜𝑜[𝑥𝑥,𝑦𝑦, ~𝑡𝑡], r[𝑥𝑥,𝑦𝑦, ~𝑡𝑡], 𝑝𝑝[𝑥𝑥,𝑦𝑦, ~𝑡𝑡] , a[𝑥𝑥,𝑦𝑦, ~𝑡𝑡],𝑛𝑛) 

[1.3.2] 

where: 

Sc=  soil class 

Sp=  soil property 

s  = soils, other attributes of the soil at a point 

c  = climate, climatic properties of the environment at a point 

o  = organisms, vegetation, or fauna, or human activity 

r  = topography, landscape attributes 

p  = parent material, lithology 

a  = age, the time factor 

n  = space, spatial position 

t   = time (where t is defined as an approximate time) 

x,y  = the explicit spatial coordinates 

f   = function or soil spatial prediction function (SSPF) 

Soil (s) is included as a factor because soil can be predicted from its properties, 

soil properties from its class or other properties (McBratney et al. 2003), and earlier 

studies have shown this, for example McBratney and Webster (1983). This additional 

soil information could be gathered from a prior soil map, or from either remote or 

proximal soil sensing or even expert knowledge. The n factor means that soil can be 

predicted from its spatial coordinates alone, but may also be used in a distance-to-or-
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from some object, such as distance from a watercourse, distance from a road or 

proximity to a point source of pollution etc.  

In the last 5-10 years, there has been a proliferation of high resolution 

environmental data that describe or can be used as proxies within the scorpan 

framework such as DEMs, and remote (satellite) and proximal sensing data 

infrastructures, much of which are discussed in McBratney et al. (2003) and Minasny 

et al. (2008). Subsequently there has been a significant uptake in using the scorpan-

SSPF approach around the world as a means of building or populating spatial soil 

information systems from relatively sparse datasets (Lagacherie 2008). Updating or 

renewing existing or even out-of-date soil maps can be facilitated with DSM, see for 

example Rossiter (2006) and Kempen et al. (2009). In a more overall context, DSM 

is seen as a practicable framework for fulfilling the current and future demand for 

relevant soil information (Sanchez 2009). Authors have noted that DSM is now 

moving from the research phase to one that is operational in the context of global and 

national soil mapping ventures (Sanchez et al. 2009, Grunwald et al. 2011).  

In practice, the creation of soil maps using the scorpan-SSPFe approach was 

discussed previously in the description of the environmental correlation and 

regression kriging approaches. Within some mapping domain, either existing or new 

observations m are taken from explicit locations [x, y]. This is followed by fitting 

some kind of function to a set of pedologically meaningful environmental layers 

which are generally gridded raster layers of a given spatial resolution. Once the 

model is fitted at the m observation points, the model is extended to all grid cell 

nodes of the raster layers, giving a digital soil map.  

The form of the model or f (the SSPF) is often defined at the outset of a mapping 

project that is decided upon for reasons which may include: (1) it is one that the map 

producer is most familiar with; (2) its simplicity of application; (3) or its 

sophistication and power to distinguish complex relationships; (4) or that it captures 

some pedological nuance that the practitioner desires. Whatever the case, there are 

many forms of f that are available and the development of them continues with 

advances in normal statistical theory which are discussed generally in McBratney et 

al. (2000) and (2003) and reviewed extensively and in more detail by Hastie et al. 

(2009). SSPFs can range from simple linear models with either ordinary or 

generalised least squares fitting; generalised linear and additive models (Hastie and 

Tibshirani 1990); classification and regression tree models (Breiman et al. 1984); 
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neural networks (Hastie et al. 2009); advanced data mining methods such as Cubist 

models (Quinlan 1993; http://www.rulequest.com/); and knowledge-based inference 

systems (Zhu et al. 1997, Bui 2004). In terms of handling any spatial autocorrelation 

in the residual or e that is likely to result from fitting a scorpan-SSPF, a regression 

kriging (alternatively scorpan kriging; McBratney et al. 2011) or universal kriging 

methodology would be used. 

Further developments to the DSM approach as a means of improving the 

accuracy of predictions has been the application of methods of generating multiple 

models via iteration which are then aggregated to produce final estimates. These 

approaches are discussed in McBratney et al (2003) and are referred to as bootstrap 

aggregating or bagging (Effron and Tibshirani 1993) and boosting methods (Freund 

and Schapire 1997). Bootstrapping is an iterative sampling (with replacement), 

model fitting method, for which is the basis of the powerful random forest algorithm 

(Brieman 2001) that has recently been popularised in DSM (Grimm et al. 2008 and 

Eustace et al. 2011 as notable examples). While boosting is a “committee” approach 

that combines the outputs of many “weak” models. 

The other important development (in terms of strengthening model predictions) is 

the application of formal statistical methods for modelling spatial variation. REML-

EBLUP (Residual Maximum Likelihood- Empirical Best Linear Unbiased Predictor) 

was introduced by Lark et al. (2006) as a statistically sound method for soil mapping. 

Intrinsically similar to regression kriging in that both are mixed models where the 

observed data are modelled as the additive combination of fixed effects (the 

secondary environmental data), random effects (the spatially correlated residuals e), 

and independent random error. Yet REML estimates the parameters of the trend and 

covariance functions unbiasedly. These parameters are then used in the EBLUP i.e. a 

general linear mixed model. The statistical theory of REML-EBLUP is discussed in 

Lark et al. (2006) and arose out of a need to rectify issues associated with normal 

regression kriging (the method proposed by Odeh et al. 1995) where estimation of 

the variogram of residuals is theoretically biased (Cressie 1993). While regression 

kriging may be theoretically sub-optimal and an ad hoc method, the improvement of 

prediction accuracy from REML-EBLUP has been demonstrated to be only small 

when comparative analysis was performed (Minasny and McBratney 2007). Because 

the REML estimation of parameters requires numerical optimization, the 

practicability of REML-EBLUP with large data sets has been questioned (Lark et al. 
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2006, Minasny and McBratney 2007). Nevertheless REML-EBLUP stands as a 

statistically sound soil mapping SSPF and Lark et al. (2006) provide discussion and 

ideas on improving the practical limitations this method may have.    

1.4. Whole-profile digital soil mapping 

Soil survey, soil classification and conventional mapping of soils consider soil as a 3-

dimensional (3D) entity or body (Hole 1953). In the words (or to that effect) of 

American pioneering soil scientist Charles E. Kellogg: “soils have shape and area, 

breadth and width, as well as depth” (Kellogg 1949). However, DSM primarily has 

been used only in the 2D sense to predict soil property variation for single depth 

intervals or horizons- predominantly only from the top soil (Grunwald 2009). In fact, 

Grunwald (2009), who reviewed 90 journal articles from high impact soil science 

journals, found that 28% of reviewed studies performed scorpan-SSPF modelling for 

multiple soil layers or horizons; only one paper (Carrara et al. 2007) provided a 3D 

representation of soil which was of soil penetration resistance. DSM of soil classes is 

an exception for 3D soil mapping and has much utility because a number of soil 

properties can be inferred from one classification which are usually derived from the 

modal profile of each class. However the problem with mapping soil classes are that 

the soil properties vary discretely in the taxonomical space which may be 

problematic as soil variability across a mapping domain will appear as a stepped 

function rather than a fully continuous function (Webster and Oliver 2006).  

It is quite a sensible undertaking to attempt to map the variation of soil properties 

in both the lateral and vertical dimensions. Understanding the carbon sequestration 

potential of soil and for carbon accounting (Bajtes 1996, Lal 2004), determining the 

amount of water soils can hold across a field or even a watershed, determining the 

depth to an impeding layer for crop growth across a farm, and investigations of soil 

acidity, (just to detail a few examples) will most likely require some understanding 

of how soil properties vary with depth. Ponce-Hernandez et al. (1986) describes that 

soil properties vary more-or-less continuously with depth. The variation is often 

anisotropic for certain properties such as carbon (Hiederer 2009) and soil texture 

(Myers et al. 2011), which may be the result of landuse activity or the gravitational 

vector of profile weathering and development or both (Hole 1961). Exceptions to 

continuous soil property variation with depth is where there is strong anthropogenic 

(cultivation, removal and replacement of soils), geologic (contrasting parent 
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materials), and pedological (the development of clear and abrupt soil horizons) 

forcings for which sharp discontinuities in the depth distribution of soil properties 

will occur.  

Besides that of Carrara et al. (2007) a few studies have proceeded to map out the 

3D distribution of soil properties, which have largely been GIS-based rather than 

model-based such as Mendonca Santos et al. (2000), Sirakov and Muge (2001) and 

Zhang et al. (2008). To model the distribution of soil properties in a pseudo-3D way 

requires more than just lumping model outputs for successive depth intervals or 

horizons together; rather some empirical function needs to be fitted to the observed 

soil data.  

Empirical functions describing the depth distribution of soil properties include 

linear and polynomial functions (Colwell 1970; Moore et al. 1972), exponential and 

logarithmic functions (Russell and Moore 1968).  Myers et al. (2011) introduced an 

asymmetric peak function for modelling complex and anisotropic soil property depth 

profiles with horizons of weathered loess. Smoothing splines for soil property 

variation were introduced by Erh (1972) which was followed by work from Ponce-

Hernandez (1986) and mathematical derivation by Bishop et al. (1999) of 

pycnophylactic (mass preserving) smoothing splines. The mass preserving splines 

model the continuous variation of soil properties with depth whilst maintaining the 

integrity of the observed horizon or layer data. Bishop et al. (1999) demonstrated 

successfully the application of the mass-preserving spline for a number of soil 

properties with much success. The proviso for a ‘good fit’ is that a sufficient number 

of observations at regular depths are required.  

A study by Minasny et al. (2006) used the negative exponential depth function to 

describe soil carbon concentration variation with depth in the Edgeroi area, Australia. 

The authors modelled the parameters of the exponential function using a modified 

neural network approach, then predicted parameters of the exponential function over 

the whole area, which enabled them to calculate the carbon distribution over the 

profile and also the storage of carbon at any depth. Mishra et al. (2009) fitted an 

exponential function to soil profile data from Indiana, USA, and then interpolated the 

parameters independently using ordinary kriging. Meersmans et al. (2009) performed 

something similar and developed empirical functions which predicted the parameters 

of the exponential depth function for the area of Flanders in Belgium. The functions 

were stratified based on landuse, and the parameters were related to particle size 
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distribution and height of groundwater. Kempen et al (2011) developed a depth 

function that combines general pedological knowledge with geostatistical modelling.  

They modelled the distribution of soil organic matter content based on typical 

horizons from ten soil types. Five depth function building blocks were defined, and 

for each soil type, the depth function structure was obtained by stacking a subset of 

modelled horizons. The parameters of the depth function for each of the horizons 

were interpolated using a geostatistical procedure combining environmental 

information.  

One of the limitations for pseudo-3D DSM, particularly of using equivalents of 

the negative exponential depth function is that the function is only useful for certain 

soil properties such as soil organic carbon that naturally have that type of anisotropic 

variation. The method of Kempen et al. (2011) similarly suffers because it is suitable 

in circumstances such as where it was developed in the Netherlands where soil 

properties do not vary smoothly with depth because of anthropogenic and geologic 

forcings. A general method i.e. one that can be extended to a variety of soil 

properties and can cope to some extent with discontinuous variation in soil properties 

could be the use of the mass-preserving spline method of Bishop et al. (1999). To 

date this method has not been extended to a DSM framework, and as such is worthy 

of investigation (chapter 2).      

1.5. Uncertainty estimation of digital soil maps 

Implicit in DSM is the application of numerical models to infer the spatial (and 

temporal) variations of soil attributes from soil observation and also from knowledge 

of correlated environmental variables (Lagacherie and McBratney 2007). 

Unfortunately these models are not error free. This is because soil is so complex that 

no description or quantitative expression of them is ever complete (Webster and 

Oliver 2006); thus numerical models are merely abstractions of the true character and 

processes of soils. Quantitative methods for analysing the uncertainty of our 

representations of soil distribution are therefore indispensable in terms of 

communicating the reliability of given spatial soil information. Therefore it is not 

sufficient to produce digital soil maps showing the prediction of soil attributes only; 

the uncertainty of each prediction should also be shown (Minasny and Bishop 2008). 

However, possibly because practitioners are unaware of what to do in a relatively 

complex field, uncertainty is seldom quantified in routine DSM (Grunwald 2009). 
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Nevertheless, analysis of uncertainty is a major topic in many branches of science 

(May 2001), with some valuable contributions from Heuvelink (1998), Zhang and 

Goodchild (2002), and Foody and Atkinson (2002) whom provide substantive 

reviews of the theoretical aspects and practical applications of uncertainty analysis 

for use in the domain of spatial information sciences.  

Minasny and McBratney (2002) describe the sources of uncertainty that might be 

present in soil information or may propagate through to the predictions when 

producing a digital soil map. These include: (1) uncertainties in the input data (the 

secondary environmental information) which are discussed in detail by Heuvelink 

(1998) and Bishop and Minasny (2006). (2) Uncertainties in the data used for 

calibrating SSPFs. These may be positional inaccuracies or measurement errors. (3) 

Uncertainties of the model parameters. (4) Uncertainties due to model structure.  

A number of methods have been proposed to estimate uncertainty in the literature 

which Solomatine and Shrestha (2009) describe as falling into specific categories. 

These are: (1) analytical methods, one of which is first-order Taylor analysis 

(Heuvelink 1998). (2) Simulation and sampling-based methods, which includes the 

widely used Monte Carlo simulation method (Heuvelink 1998). (3) Bayesian 

methods (Diggle et al. 1998) which include Markov Chain Monte Carlo simulations 

as performed by Minasny et al. (2011), and Generalised Likelihood Uncertainty 

Estimation (GLUE; Beven and Binley 1992). (4) Methods based on analysis of 

model errors such as the empirical model error approach by Solomatine and Shrestha 

(2009). (5) Methods based on fuzzy set theory (Maskey et al. 2004).  

First-order Taylor analysis is based on estimating the partial contribution of the 

error in each variable and evaluating its contribution to the overall uncertainty 

(Minasny and Bishop 2008). Categories 2 and 3 analyse the uncertainty of input 

variables (parameters, secondary environmental data,) by propagating it through the 

model (a SSPF) to the outputs, which requires some assumptions about the 

distributions of model parameters etc. Often, analysis of model errors (category 4) 

requires certain assumptions regarding the residuals (Solomatine and Shrestha 2009). 

The fuzzy theory based methods requires knowledge of the membership function of 

objects (soil attributes) subject to the uncertainty.        

Probably one of the drawbacks to practicable application of uncertainty analysis 

is that most methods deal with only one source at a time (Solomatine and Shrestha 

2009). Thus to determine the total uncertainty requires independent analyses. Not 



Chapter 1 - Context of research: a review of the literature 
 

30 
 

only does this become a computationally laborious exercise, the contribution of 

uncertainty due to the interaction between each different source is not equated 

(Gupta et al. 2005). While it is important to know the contribution of each of the 

different sources of uncertainty, as then it becomes possible to address each in an 

objective manner, it is equally important to know the total prediction uncertainties. 

Practicable methodologies that are computationally efficient for quantifying the total 

uncertainty propagated through SSPFs are scarce and need to be investigated. 

Furthermore these practicable methodologies need to be extended in order to 

quantify the uncertainties of digital soil maps describing the distributions of soil 

properties both in the lateral and vertical dimensions (pseudo-3D). This is 

investigated in chapter 3.  

1.6. Assessing the quality of digital soil maps with validation 

As already established, SSPFs for mapping soils are rarely error free, and predictions 

are made in the presence of a number of sources of uncertainty. Validation of digital 

soil maps (the predictions) is analogous to ground-truthing exercises for remote 

sensing data infrastructures (Liu et al. 2007). It is a necessary, yet a rarely performed 

procedure (Grunwald 2009) for which some concept of soil map quality can be 

communicated. Quality criteria for digital soil maps in general are based on measures 

of variance between the SSPF predictions and co-located observations. For soil class 

maps the accuracy measure is often based on user’s and producer’s accuracies and 

the associated Kappa statistics which are discussed in detail by Lark (1995). For soil 

property maps, the Root Mean Square prediction Error (RMSE; for derivation see 

equation 2.2.3) is commonly reported.  

Strategies for validating digital soil maps include: (1) holding back a random 

proportion of soil observations which are excluded from model calibration. 

Commonly around 25-30% of data are held back, which are then used to quantify the 

accuracy of the model. (2) Cross validation, which can be leave-one-out or n-fold 

cross-validation, and is similar to the random holdback strategy (Effron and 

Tibshirani, 1993). In leave-one-out cross validation (LOCV), a sample observation is 

left out, while the rest of the observations are used to calibrate the prediction model, 

the left-out observation is used to assess the accuracy of the calibrated model. The 

process is repeated for all observations. Meanwhile in n-fold cross validation, the 

dataset is divided into n sections or folds, and the cross validation process is repeated 
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for n-folds. (3) Additional samples are collected from the mapping domain and are 

completely independent of the model calibration data. Ideally, the additional samples 

are collected using a randomised or probability sampling design (de Gruijter et al. 

2006). For random sampling, all units within a mapping domain have a positive 

probability of being selected, where the probabilities are determined by the sampling 

design and can be derived from this design (de Gruijter et al. 2006). In a review by 

Brus et al. (2011) they concluded that probability sampling is the more superior 

validation method (in comparison the random holdback or cross-validation 

strategies) because unbiased estimates of the measures of soil map quality can be 

obtained by ‘design-based’ inference and thus are free of model assumptions (Brus 

and de Gruijter, 1997). This is generally not the case for random holdback or cross-

validation because the samples used for validation (and for calibration for that 

matter) do not represent a probability sample because the data often comes from 

legacy soil survey where sampling is performed without any statistical strategy (Brus 

et al., 2011). Thus the quality measures may be affected by bias.  

The constraints of cost and size of soil datasets will determine the most 

appropriate validation strategy, such that random holdback may only be applicable 

for large datasets for example. Nevertheless, validation of soil maps has 

conventionally been geared only towards assessing the accuracy of the model 

predictions. Ideally, however, the quality combination of the predictions and the 

quantifications of the associated uncertainties need to be tested to properly evaluate 

digital soil maps (McBratney et al. 2011). An example of situations where this has 

been done is scarce, yet is the focus of investigations in chapter 4.   

1.7. Serving the end user: scale and manipulations thereof for digital soil 

mapping 

The discussion of DSM till now has detailed only general concepts of creating digital 

soil maps and made considerations for estimating soil distribution as a 3D entity 

within a DSM framework. Discussion then considered various aspects of analysing 

the prediction uncertainties and validating soil maps. Equally important to this 

discussion also is the considerations of scale. How do we represent scale with digital 

soil maps? At what scales are users likely to want spatial soil information? How does 

scale contribute to our descriptions and interpretations of soils? How does scale 

determine how and what methods are used to map soils? How do we go about 
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manipulating the scale of an existing soil map to create a new soil map at a desired 

scale?  

When considering the hierarchy of spatial scales recognised for soil (Hoosbeek 

and Bryant 1992), the i-levels of interest for soil mapping would be global (i+6), 

continental (i+5), regional (i+4), watershed (i+3), farm (i+2) and field (i+1) scales. 

Conventional soil mapping uses scale in the cartographic sense, where the scale of 

the map indicates how the size of the paper map relates to the actual size of the area 

being portrayed. Generally low levels of the scale hierarchy are characterised by 

smaller spatial scales (areal extents) with lots of detail. At a field scale, a 1:500 scale 

would not be uncommon, where 1cm on the map would represent 5m on the ground. 

At the global scale, we would expect large spatial scales and less detail. For example, 

the FAO-UNESCO Soil Map of the World (Nachtergaele 1999) was produced at 1: 5 

000 000 scale (1 cm on map is 50km on the ground).  

Digital soil maps are produced using a gridded raster format where 

representations of scale are mostly defined in terms of the raster model resolution 

(Hengl et al. 2006). The other important entity of scale to consider for DSM is the 

matter of support, such as whether the predictions represent the value for a definable 

area or volume (referred to spatially as a block) or whether they represent the value 

at a point (very small area or volume) (Bierkens et al. 2000). Like conventional soil 

maps, the spatial extent of mapping is used to characterise scale in some sense for the 

different hierarchical levels. Extent, resolution, and support thus represent a scaling 

triplet, and constitute the digital soil map model which is described more-or-less by 

Bishop et al. (2001). 

McBratney et al. (2000) indicated that the typical extent for global and 

continental scales would be >200 km with a typical resolution of >2 km. The 

GlobalSoilMap.net project is an exception to this, which is aiming to map a number 

of functional soil properties at a global scale with a resolution of 90m (Sanchez et al 

2009). However, the intention of the GlobalSoilMap.net project is to provide soil 

information for the entire globe that can be used to address questions at all the 

meaningful scales in the hierarchy for soil mapping. Nevertheless, at the global scale 

we might expect that DSM might be used to address questions related to global 

climate modelling and policy making for ensuring food security (McBratney et al. 

2000). At the regional and watershed scales, which will typically have extents of 2-

200 km and resolutions of 20 m-2 km, the questions might be framed on monitoring 
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the environment in terms of soil degradation or studying changes brought about by 

disruption of ecosystems or specific landscapes. At the farm and field scales 

questions related to nutrient cycling might be addressed or alternatively the fine 

scaled soil information (typical extent of 2 km and resolutions of <20 m) could be 

used as input for decision making within a precision agriculture setting.   

Important considerations for DSM at the meaningful scales of the hierarchy are 

the scale dependent soil-landscape relationships, which is often a neglected area of 

investigation (McBratney et al. 2011). The clorpt soil-forming factors all operate at 

different scales and therefore influence soil processes and soil variation at different 

scales as well (Addiscott 1993). Subsequently, as Heuvelink and Pebesma (1999) 

described, it is normal to expect different models (SSPFs) describing the same 

process (such as soil property variation) at different scales. A reason for this could be 

the relative importance of the environmental data layers at the investigated scale. Bui 

et al. (2006), Smith et al. (2006) and Kim and Zheng (2011) are examples which 

have investigated the scale influence of the environmental data (emphasis on digital 

elevation models) on the predictability of SSPFs. From a pedological perspective, a 

need to identify which scales of variation, which are operative and discernable in the 

environmental layers, are most strongly related to the observed variation in the soil 

attribute of interest represents good DSM practice (McBratney et al. 2011). 

However, there is a limitation to this such that often the scale at which environmental 

data are available is not at the scale required for investigation, which may lead to a 

simplification of SSPFs (Heuvelink and Pebesma 1999). Another reason for ending 

up with different SSPFs at different scales relates to the support, whereby SSPFs 

developed at point support do not necessarily extend to block support. Moving from 

point support to block support usually implies going from single point predictions to 

predictions which represent an average of point values within each block (Heuvelink 

and Pebesma 1999).  

The last point of discussion is the matter of scale manipulation. Scale 

manipulation involves the practice of harmonising the scale at which soil information 

is available to the scale at which it is required. The practice of harmonisation 

represents a critical tool for delivering tailored soil information to the parties whom 

request it. For example, a map displaying the distribution of soil organic carbon may 

have been created at the regional scale to address particular questions related to that 

scale. However, a soil information user may require a map of the distribution of 
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carbon across a particular farm within the regional mapping domain. The practitioner 

could use the regional map to perform scale manipulations to produce a map with the 

ideal extent, resolution and support required for the farm scale. This would entail 

some sort of downscaling. Conversely some sort of upscaling or convolution would 

be necessary if maps at farm scale are used as inputs to deliver a map at the 

watershed or regional scale.  

In geostatistics scale manipulation as described here is referred to as the ‘change-

of-support’ problem for combining incompatible datasets (Cressie 1996). Change of 

support represents a wide spectrum of statistical challenges and associated 

methodologies that have been reviewed extensively by Gotway and Young (2002). 

For DSM, manipulations of scale involves methods of moving up and down the scale 

hierarchy, which are generally referred to as upscaling and downscaling methods 

respectively (Bierkens et al. 2000). Changes of support such as from point support to 

block support and vice versa also come under the umbrella of scale manipulation. 

Some methods for scale manipulation of soil information are discussed in McBratney 

(1998) and Bierkens et al. (2000). A general assumption of most methods assumes 

that the behaviour of soil at large scales is explained by the average of the soil 

behaviour at the fine scales. This implies some sort of linear relationship both 

between the hierarchies of scale and the support of observations.  This assertion may 

or may not be upheld in reality or may only be relevant at a specific range of scales. 

Grunwald et al (2011), citing deYoung et al. (2008), does explain however, that 

nonlinear dynamics and alternate states are well known in ecological systems, yet 

they have been poorly investigated in the soil science domain.  

An explicit framework of how to up- and downscale within the constraints of the 

digital soil map model has not previously been introduced, yet constitutes the focus 

of investigations in chapter 5. A novel method of downscaling is also investigated in 

chapter 6.    

1.8. Thesis outline    

Tailoring spatial soil information to the requirements of the user is one of the 

idealistic pursuits of this project; with the aim that the methods for delivering this 

tailored information are practicable. This review revealed some areas of new 

research that need to be conducted if a framework is put into place for delivering 
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comprehensive spatial soils information to the wide audience of soil information 

users. These areas are: 

1. There is a requirement for a general method for digital soil mapping for the 

whole-profile (effectively pseudo-3D) distribution of soil properties. (Chapter 

2) 

2. There is a requirement for a general method for quantifying the total 

prediction uncertainties of the digital soil maps that describe the whole-

profile distribution of soil properties, and which is not computationally 

prohibitive. (Chapter 3) 

3. There is a requirement for a method to validate the whole-profile predictions 

of soil properties and the quantifications of their uncertainties. (Chapter 4) 

4. There is a requirement for a systematic framework for scale manipulate the 

scale of digital soil maps as a means of generating soil information products 

tailored to the needs of soil information users. (Chapter 5 and 6). 
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Soils have shape and area, breadth and width, as well as depth. 

[Charles E. Kellogg 1949] 
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Chapter 2  

Mapping continuous depth functions of soil carbon storage and 

available water capacity. 
Summary 

There is need for accurate, quantitative soil information for natural resource 

planning and management. This information shapes the way decisions are made as 

to how soil resources are assessed and managed. This chapter proposes a novel 

method for whole soil profile predictions (to 1m) across user-defined study areas 

where limited soil information exists. Using the Edgeroi district in north-western 

NSW as the test site, I combined equal-area spline depth functions with digital soil 

mapping techniques to predict the vertical and lateral variation of carbon storage 

and available water capacity (AWC) across the 1500km2 area. Neural network 

models were constructed for both soil attributes to model their relationship with a 

suite of environmental factors derived from a digital elevation model, radiometric 

data and Landsat imagery. Subsequent fits of the models resulted in an R2 of 0.44 

for both carbon and AWC. For validation at selected model depths, R2% values 

ranged between 20–27% for carbon prediction (RMSE: 0.30–0.52 log (kg/m3)) and 

between 8–29% for AWC prediction (RMSE: 0.01m/m). In order to improve upon 

the model and validation results there is a need to address some of the structural 

and metrical uncertainties identified. Nevertheless, the resulting geo-database of 

quantitative soil information describing both lateral and vertical variation is an 

example of what can be generated with this proposed methodology. I also 

demonstrate the functionality of this geo-database in terms of data enquiry for user-

defined queries.   
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2.1. Introduction  

In order to benefit from the ecological and economical functions of soil in a 

sustainable way; land holders, private-sector and non-governmental stakeholders 

and, governmental departments need access to quantitative soil information. Such 

information confers weight to decisions regarding the management of the land and 

soil resources. Even in most environmental and agricultural research, accurate, 

continuous soil attribute data is becoming increasingly important in computer 

simulation models and for the assessment and monitoring of soil resources (Hempel 

et al. 2008). To facilitate this need, this chapter introduces a novel method for the 

prediction of user-defined, continuous soil properties to a given soil depth, across 

landscapes (at a fixed resolution) where only limited soil data exists.  

The variation of soil properties down a profile is usually continuous (Ponce-

Hernandez et al. 1986). Soil depth functions are often created to represent the depth-

wise variation of soil properties.  However, with traditional sampling of soil profile 

horizons, it is often assumed that the horizon value of a particular attribute 

represents the average value for that attribute for the depth interval of that horizon. 

With this paradigm, in effect what should be a continuous function, the data often 

appears discontinuous or stepped. Similarly, current digital soil mapping techniques 

are limited to map soil properties at specified depths or a combination of depth 

intervals (see Grimm et al. 2008 and Stoorvogel et al. 2009 as recent examples). 

Bishop et al. (1999) pointed out that the discontinuity of depth functions derived 

from bulk horizon data leads to inaccuracies when attempting to predict the value of 

an attribute at specific depths within a soil profile. The earliest known attempt (to 

derive continuous depth functions of soil attributes) was by Jenny (1941) who drew 

freehand curves between attribute data points that corresponded to the mid-point 

value of a horizon. Over time, more sophisticated methods have evolved for 

constructing continuous soil depth functions such as using exponential decay 

functions (Russell and Moore 1968). Minasny et al. (2006) demonstrated that fitting 

exponential decay functions to carbon profile data resulted in an adequate quality of 

fit when attempting to map carbon storage in the Lower Namoi Valley, NSW. 

Linear regression and polynomials to the n-th degree by least-squares fitting have 

also been additional methods for deriving continuous soil depth functions (Colwell 

1970; Moore et al. 1972). However, the disadvantage of these novel procedures is 
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that the value of a property at any depth affects the form of the fitted function at all 

depths (Ponce-Hernandez et al. 1986). As a consequence, the inflexibility of these 

functions results in a varied quality of fit (Webster 1978).  

Irrespective of the soil property, a more flexible and accurate method for fitting 

continuous functions of soil data is the use of smoothing splines (Erh 1972) and 

equal-area spline functions as proposed by Ponce-Hernandez et al. (1986). Both 

Ponce-Hernandez et al. (1986) and Bishop et al. (1999) provide a good 

mathematical explanation of the operation of spline functions. Essentially, a spline 

function is a set of local polynomial functions- quadratic or cubic-  tied together 

with ‘knots’ that describe a smooth curve through a set of points. Bishop et al. 

(1999) demonstrated their superiority over other continuous soil depth functions 

when they predicted a number of soil properties including soil pH, electrical 

conductivity (EC), clay content, organic carbon content, and gravimetric water 

content.   

Clearly, continuous soil depth functions such as equal-area splines are 

advantageous for prediction of soil properties at specific depths. However, in a 

spatial context, a collection of spline functions for individual site observations will 

ultimately lead only to point observation data sets. To the parties concerned, such 

data will be of little use when they require continuous estimates of soil property 

variation across defined study areas or landscapes. The response to this demand has 

been answered partly in the way of digital soil mapping, where soil properties are 

mapped digitally based on their relationship with environmental variables (Minasny 

et al. 2008). The scorpan factors or environmental covariates as proposed by 

McBratney et al. (2003) provide a valuable predictive framework for determining 

soil variability in areas with limited soil data.  

Given the predictive capabilities of soil depth functions and an explosion in the 

capabilities of digital soil mapping in areas with limited data (Lagacherie 2008), it 

seems only logical for there to be an amalgam of both methods to quantitatively 

predict the vertical and lateral variation of soil properties across a defined area. 

Using agronomically important soil properties-soil carbon storage and available 

water capacity (AWC) as the targets for prediction, this chapter proposes a novel 

method of predicting both their spatial and depth-wise variation. This is achieved in 

a number of stages: 

• Fitting of equal-area spline functions to soil carbon and AWC profile data 
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• Assembly of a geo-database of environmental or scorpan factors for a 

defined study area where the point observations exist. 

• Derivation of a neural network model using the best available set of scorpan 

factors to predict the depth-wise variation of the two soil properties. 

• Extrapolation of the spline parameters onto the wider study area where soil 

observations do not exist. 

• Mapping of the carbon storage and AWC of the entire study area to a depth 

of 1m. 

• Demonstration of the functionality of the resulting soil geo-database for data 

enquiry.  

2.2. Material and Methods 

2.2.1. Study area 

The study site is situated in the lower valley of the Namoi River, near Narrabri 

(30.32S 149.78E), approximately 500 km NNW of Sydney, NSW, Australia (Figure 

2.2.1). Within this area, which covers approximately 1500 km2, agriculture is the 

major landuse with irrigated cotton, wheat and pastoral farming being the 

predominant enterprises.  Significant areas of native vegetation are also present, 

where it is mostly concentrated on the lower foothills of the Nandewar Range on the 

eastern flanks of the study site. 
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Figure 2.2.1. The Edgeroi study area. Inset image is a true colour satellite image 

with the sampling locations superimposed as white dots. 

2.2.2. Environmental Data 

For the purpose of digital soil mapping, a number of environmental indices were 

sourced and interpolated onto a common grid of 90 m resolution, encapsulated 

within the study area. These included:  

• Landsat 7 ETM+ image taken towards the end of Summer 2003: The 

Enhanced Thematic Mapper Plus (ETM+) is a multispectral scanning 

radiometer that is carried on board the Landsat 7 satellite. There are 7 

spectral bands that Landsat detects in the visible and near-infrared 

wavelengths: band 1 (0.45–0.52 μm), band 2 (0.52–0.60 μm), band 3 

(0.63–0.69 μm), band 4 (0.78–0.90 μm), band 5 (1.55–1.75 μm), band 7 

(2.09–2.35 μm). The Landsat bands were used to approximate the 

biosphere as a soil forming factor in terms of generalised land cover and 

land use. Vegetation cover and type was approximated using the 

Normalised Difference Vegetation Index (NDVI) determined by using 
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bands b3 and b4, where: NDVI = (b4-b3) / (b4+b3). Furthermore, the band 

ratios or more commonly, soil enhancement ratios of b3/b2, b3/b7 and 

b5/b7 were derived. It has been proposed that these soil enhancement ratios 

can accentuate carbonate radicals, ferrous iron, and hydroxyl radicals 

respectively in exposed soil (Saunders and Boettinger 2007). 

• Gridded gamma-radiometric survey data were obtained from the recently 

compiled radiometric map of Australia, which integrates over 540 surveys 

at a 100 m resolution (Minty et al. 2009). The method of gamma-

radiometric survey estimates the abundances of potassium (40K), thorium 

(232Th) and uranium (238U) gamma-ray radiation emitted from the earth’s 

surface. Cook et al. (1996) demonstrated that variations in the gamma-ray 

radiation of earth surfaces correspond with the distribution of various 

parent materials over the landscape.  

• Digital elevation model (DEM) from the Shuttle Radar Topography 

Mission (SRTM) terrain data. From the DEM, first and second derivatives, 

namely: slope, aspect, terrain wetness index (TWI), flow length, slope 

length factor (LS-factor), area above channel network (AOCN) and stream 

power index (SPI) were determined. Moore et al (1993) and McKenzie and 

Ryan (1999) provide exemplary studies where some or all of the 

derivatives have been used to explore relationships with the spatial 

distribution of various soil properties.  

2.2.3. The equal area smoothing spline 

The spline model I used is a generalisation of the quadratic spline model of Bishop 

et al. (1999), where data are averages over adjacent horizons or layers in a soil 

profile. The model used in this chapter is generalised for cases where the supports of 

the data are not adjacent. Given measurements for soil properties at n layers in a soil 

profile, the boundaries of the layers are given in increments (u1, v1), (u2, v2), … (un, 

vn), given that u1 < v1 ≤ u2 < v2 ≤ … ≤ un < vn. The measurement of the bulk sample 

from layer i is assumed to reflect the mean attribute level, apart from measurement 

error. Mathematically, the measurements are modelled as: 

𝑦𝑦𝑖𝑖 = 𝑓𝑓𝑖𝑖� + 𝑒𝑒𝑖𝑖  

[2.2.1] 
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where 𝑦𝑦𝑖𝑖  is modelled estimate of the measured bulk sample from layer i. It is 

assumed that the true soil attribute values vary smoothly with depth. This is 

translated into mathematical terms. I denote depth by x, and the depth function 

describing the true attribute values by f(x); which mean that f(x) and its first 

derivative f(x) are both continuous, and that f’(x) is a quadratically integrable 

function. The depths of the boundaries of the n layers are given by xn < xn, … <xn, 

and 𝑓𝑓𝑖̅𝑖  is the mean value of f(x) over the interval (xi-1, xi) and ei are measurement 

errors with mean 0 and variance σ2. f(x) represents a spline function, which can be 

found by minimising: 

 

1
𝑛𝑛
��𝑦𝑦𝑖𝑖 − 𝑓𝑓𝑖̅𝑖�

2
𝑛𝑛

𝑖𝑖=1

+ 𝜆𝜆� [𝑓𝑓𝑖𝑖(𝑥𝑥)]2
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𝑥𝑥0

𝑑𝑑𝑑𝑑 

[2.2.2] 

The first term represents the fit to the data, the second term measures the roughness 

of function f(x), expressed by its first derivative f’(x). Parameter λ (lambda) controls 

the trade-off between the fit and the roughness penalty. The solution is a linear-

quadratic smoothing spline, linear between layers, and quadratic within layers. See 

Appendix 2.1. for the derivation. 

2.2.4. Mapping the smoothing spline soil depth function 

The steps for mapping the smoothing spline soil depth function are as follows:  

1) Collate legacy profile descriptions. They can have any kind of variation in 

any depth increments as long as they describe some of the variation in 

properties with depth. The soil dataset I used consists of 341 soil profiles. 

210 were sampled on a systematic, equilateral triangular grid with a spacing 

of 2.8km between sites (McGarry et al. 1989). The further 131 soil profiles 

are distributed more irregularly or on transects (Figure 2.2.1). The dataset 

describes and quantifies various soil morphological, physical and chemical 

attributes at depth increments of 0–0.1, 0.1–0.2, 0.3–0.4, 0.7–0.8, 1.2–1.3 

and 2.5–2.6 m.  

The focus of this study examines the vertical and lateral variability of carbon 

storage and AWC across the Edgeroi area at the time of measurement (1985-

1987).  The units of measurement used for carbon and AWC are kg m-3 and 
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m/m respectively for each depth interval. Soil organic carbon concentration 

was measured by McGarry et al. (1989). Using predicted soil bulk densities 

the soil organic carbon in kg m-3 was calculated. Soil bulk densities were 

estimated from a pedotransfer function using soil texture grades as 

predictors (Tranter et al. 2007). Similarly, AWC was derived from a 

pedotransfer function using sand, clay and organic carbon as predictors 

(Minasny et al. 2006). 

2) Fit the spline to the values for each property. This generates a continuous 

profile description for each legacy soil profile with 1cm support. The 

maximum depth for the fitted spline was 1m. The spline function depends 

on a smoothing parameter- lambda (λ). Lambda values of 10, 1, 0.1, 0.01, 

0.001, 0.0001 and 0.00001 were tried. The ‘best’ lambda value coincided 

with the spline that had the highest prediction quality i.e. the lowest root 

mean square error (RMSE). The ‘best’ lambda values were recorded and 

then assessed to determine the most frequently occurring λ for each 

variable. This value was then used as a blanket value to re-fit splines for all 

data points. 

3) From the re-fitted spline, derive the mean value of the soil property within 

defined depth increments. For this study, the mean values at depth 

increments; 0–10, 10–20, 20–30, 30–40, 40–50, 50–70, 70–80 and 80–

100cm were derived from the splines. The values for each property for each 

of the depth increments become the input for training data sets that are 

modelled with environmental covariates.   

4) Implement a model framework to derive the relationship between the 

training data set and environmental covariates. Firstly, I joined the model 

inputs (based on their spatial location) to the environmental data using the 

nearest neighbour method.  Stepwise regression was used to determine the 

best combination of environmental variables to predict both carbon content 

and AWC.  

A regression kriging approach was used for this study. For the deterministic 

component of the kriging estimate, neural networks were used to model the 

training data as a function of the environmental covariates. Neural networks 

are a class of non-linear models that are composed of a large number of 

interconnected processing elements working in parallel to solve a particular 
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problem (Hastie et al. 2001). They are sometimes called single hidden layer 

back-propagation networks. The complexity of these models can be adjusted 

by the number of nodes within the hidden layer; the more nodes the more 

model parameters and subsequent model complexity. Successive neural 

networks were constructed for a training dataset for each soil attribute, each 

time adjusting model complexity by increasing the number of hidden nodes. 

I used neural networks on the basis that predictions can be made 

simultaneously at each depth interval for each iteration. For each iteration, 

33% of the training data was used for cross-validation purposes in order to 

assess model over-fitting. Therefore, without compromising model 

predictive capability, I opted for models that also had a reasonable predictive 

capability for the cross-validated training data. The diagnostic of the model 

fits were reported as coefficient of determination or R2. Table 2.2.1 below 

shows an example of this systematic model construction and selection 

process (using AWC as the example). Here I chose the third option (3 nodes) 

as with this configuration the greatest change in the R2 value was achieved 

without greatly changing the cross-validated R2. 

Table 2.2.1. Examples of the accuracy of constructed neural networks for AWC 
with respect to iterative changes to the number of nodes. 

Number of hidden nodes R2 Cross-validated R2 

1 9% 38% 

2 34% 19% 

3 44% 15% 

4 52% 4% 

5 59% 0% 

Once selected, model formulae for each depth interval were saved for later 

use to predict in areas where data observations were not available. 

Regarding modelling the random or stochastic component for regression 

kriging, the residuals (i.e. the raw depth interval value derived from spline 

minus modelled value) were calculated. Ordinary kriging based on a global 
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variogram of the model residuals was then used to interpolate predicted 

residual values at each point on the common 90m grid. 

5) Interpolate model rules or formulas onto the study area where information 

only relating to the environmental covariates exists. The kriged residuals 

(from step 4 of general procedure) were added to the predictions. Ultimately 

this resulted in a final prediction for each modelled depth interval (0–10, 

10–20, 20–30, 30–40, 40–50, 50–70, 70–80 and 80–100cm) at each grid 

point within the study area. For each soil attribute, splines were 

reconstructed using the lambda parameter (from step 2) and predicted value 

of each soil attribute at each depth interval as inputs. From this, maps 

displaying the total cumulative value of each soil attribute were produced. 

Additionally, for demonstration of functionality, the resulting geo-database 

of soil information generated in this study was queried for the following 

three scenarios:  

• At what depth does soil carbon concentration first decrease to below 1% 

(assuming a spatially constant bulk density of 1.3 g cm-3)?  

• At what depth in the soil can we find the cumulative sum of carbon equal 5 

kg m-2? 

• What is the lowest depth at which total AWC equals 0.1m? 
Maps were produced in order to visualise the results of each scenario. 

2.2.5. Model validation 

For model validation, the profile formulae were applied to 80 validation data points 

selected randomly from the original dataset. Residuals, coinciding with the location 

of each validation point were extracted from the 90m grid of residuals then added to 

the estimated depth values, equating to a final prediction. To visually assess the fit 

of predictions against observed legacy soil information, splines for selected 

validation data points were reconstructed using the 8 predicted depth increments and 

defined lambda parameter (from step 2) as inputs.    

The diagnostic of validation is reported as the Root Mean Square Error (RMSE) 

which measures the differences between predicted and observed values. RMSE is 

equated as: 
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[2.2.3] 

where 𝑧𝑧𝑝𝑝𝑝𝑝 (𝑠𝑠) and 𝑧𝑧𝑖𝑖  (𝑠𝑠) are the predicted and true values of validation point i and n 

is the number of validation points, here 80.  The other diagnostic used was Lin’s 

concordance correlation coefficient (CCC) which measures the fidelity of the 

observations and the predictions to a 1:1 line (Lin 1989). 

2.2.6. Implementation of methods 

The fitting of splines to soil profile data, reconstruction of spline parameters for 

generating continuous soil profiles and running the user-defined queries were all 

implemented using R- a script based programming language (R Development Core 

Team 2011). JMP 6.0.1 statistical software was used for the fitting of neural 

networks. Localised ordinary kriging was performed using the geostatistical 

software VESPER (Minasny et al. 2005). All other statistical procedures were 

implemented with R. All maps were generated using ESRI ArcGIS software.  

2.3. Results 

2.3.1. Fitting equal-area splines to the dataset 

The raw carbon data displayed a log-normal distribution and subsequently was log-

transformed (natural log transformation) prior to fitting the splines. The data for 

AWC did not require any transformation. For carbon the standard deviation of the 

log-transformed data was found to be 0.89 with data values ranging from 0.0–4.7 

log(kg m-3). Overall, the best-fitting splines were found to have a lambda (λ) value 

of 0.01. AWC values ranged from 0.05–0.23 m m-1 with a standard deviation of 

0.03. The best fitting splines for AWC were also found to have a λ value of 0.01.   

2.3.2. Stepwise regression of environmental factors 

Elevation, slope, radiometric K, band 5 and band ratios 3/7 and 5/7 were found to be 

strong covariates for both carbon and AWC prediction. Other environmental factors 

of importance for carbon prediction included altitude above channel network, 

stream power index and bands 3 and 4. While for AWC, LS-factor, terrain wetness 

index and NDVI were strong prediction covariates.  
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2.3.3. Neural networks for prediction of carbon and AWC from environmental 

factors. 

From the systematic approach of neural network training, I selected models for 

carbon and AWC that featured 2 and 3 hidden nodes respectively as being the most 

appropriate (compromise between model predictive capability and over-fitting). 

Both neural networks resulted in fits where the R2 value was 44%. Cross-validation 

of the training datasets resulted in R2 values of 10% and 14% for carbon and AWC 

respectively. Depth wise, the prediction of carbon was best between 20–70 cm 

where the RMSE ranged between 0.27–0.30. The top of the soil profile was 

adequately predicted, with 50% of the variation for that layer explained. The 

predictions of the depth function for AWC were similar in that predictions were best 

between 20–70cm. The highest prediction errors were found at the top of the profile 

(0–10cm) followed by predictions at the bottom of the profile (80–100cm).  

Model residuals at each depth interval were kriged using local neighbourhood 

prediction models. For both carbon and AWC, whilst there was some spatial 

patterning of residuals looking at each depth increment independently, there was no 

similarity in the spatial distribution of residuals when comparisons were made 

between each depth increment. Overall, a general observation was that there was 

only a slight degree of spatial auto-correlation of residuals for both soil attributes.   

2.3.4. Model validation with the 80 withheld data points 

Validation of AWC showed that model fits were significantly better in the top 20 

cm of soil compared to the rest. The R2 values for the top two depth increments 

prior to the addition of residuals were 28% (0–10 cm) and 25% (10–20 cm). For the 

remaining soil profile (20–100cm), R2 values ranged between 6–12%. Figure 2.3.1a-

c illustrate the observed vs. fitted plots at the selected depth increments of 0–10 cm, 

30–40 cm and 80–100 cm respectively prior to the addition of residuals. At these 

depths, Lin’s concordance coefficients range between 0.23–0.44 indicating a 

moderate agreement, with the strongest agreement for the 0–10cm depth increment. 

While there was some spatial pattern in the distribution of residuals (Figure 2.3.1d-

f), their addition to predicted estimates of AWC made only a little improvement on 

the final predictions where R2 values ranged between 8–29% (RMSE: 0.01). Lin’s 

concordance coefficients (CCC) also indicate a modest improvement in predictions 

resulting from the addition of residuals (CCC: 0.27–0.49). Figure 2.3.1g-i illustrate 
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the observed vs. final prediction plots at the aforementioned selected depth 

increments.  

Prior to the addition of residuals, validation of the neural networks on the 80 

withheld data points indicate that the accuracy of carbon prediction decreased for 

each depth interval. For the top 40 cm of the soil profiles, model fits resulted in R2 

values between 17–24%. For the bottom 60 cm, R2 values ranged between 13–15%. 

Despite the fact that there was not a very well defined spatial distribution of 

residuals at any significant separation distances > 160 m (data not shown), the 

addition of residuals to predictions had an overall improvement on model fits at all 

depth increments where R2 values ranged between 20% and 27% (RMSE: 0.30–

0.52).  
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Figure 2.3.1.Available water capacity neural network prediction vs. observed plots 
from 80 randomly selected validation points at a) 0-10cm b) 30-40cm c) 80-100cm. 

Semi-variogram models of the residuals at each prediction depth (d-f). Final 
prediction (model prediction + residual) vs. observed plots at each prediction depth 

(g-i). RMSE: root mean square error. CCC: Lin’s concordance correlation co-
efficient. 
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Figure 2.3.2. Validation of measured soil attribute (McGarry et al. 1989) vs. final 
predictions at 0–10cm, 10–20cm, 30–40cm, 70–80cm for a) carbon and b) AWC. 

CCC: Lin’s concordance correlation co-efficient. 

For an additional validation; the majority (not all) of the raw data of each soil 

variable were measured at specified depth ranges, for example, at 0–10cm, 10–

20cm, 30–40cm and 70–80cm (McGarry et al. 1989). Validation results at these 

specific depth increments indicated good fits for both carbon and AWC (Figure 

2.3.2). For carbon (R2: 35%), the strongest agreement between the measured and 

final predicted carbon were in the 30–40cm and 70–80cm depth ranges. Conversely, 

for the 0–10cm and 10–20cm layers it can be seen that there were a greater 

proportion of systematic deviations from the 45° line. The resulting CCC of 0.56 is 

indicative of this. For AWC (R2: 56%), there was overall a good agreement between 

the measured and final predicted values (CCC: 0.74), with no obvious deviations at 

specific depth increments.  

Five data points were selected at random from the 80 validation points to 

graphically represent model predictions with observed data. These representations 

are shown in Figure 2.3.3f-j and Figure 2.3.4f-j for carbon and AWC respectively. 

The polygons represent the measured value at the specified depth increment. These 

figures are compared to the spline fits of the observed data calculated in the first 

stage of this study (Figure 2.3.3a-e and Figure 2.3.4a-e). Carbon values were back-

transformed after the construction of the modelled spline estimates. Comparing the 

modelled spline functions fitted to the raw data indicate there is an average 

agreement between the predictions and the observed values. While not fitting 
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exactly to the raw data, the splines are sensitive to actual changes in carbon down 

the profile and follow the general trend of carbon distribution as from the raw data. 

For these graphical examples, the greatest errors of prediction were found at the 

surface, particularly at ed002 and ed044 (Figure 2.3.3f and g). At these sites the 

actual vs. predicted values of volumetric carbon differed by up to 7 kg m-3.   

For AWC prediction there was also only a fair agreement between the predicted 

spline depth functions and raw values (Figure 2.3.4f-j). In general the largest 

disagreement between predicted and actual values was found at the soil surface, 

particularly at ed033, ed039, and ed157 (Figure 2.3.4f, g, i) where AWC differed by 

up to 0.05m/m.  
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Figure 2.3.3. Fitted splines (dashed lines) of observed carbon profile data 

(polygons) at five randomly selected sites (a-e). Digital soil map prediction depth 
functions of carbon (dashed lines) and observed carbon profile data (polygons) at 

same selected sites (f-j). 
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Figure 2.3.4.  Fitted splines (dashed lines) of observed AWC profile data 

(polygons) at five randomly selected sites (a-e). Digital soil map prediction depth 
functions of AWC (dashed lines) and observed AWC profile data (polygons) at 

same selected sites (f-j). 
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2.3.5. Mapping carbon storage and available water capacity 

Total carbon storage in the soil of the study area ranged between 1–50 kg m-2 to a 

depth of 1 m (Figure 2.3.5a). The total average carbon storage was 9.5 kg m-2, with 

the highest levels found to the eastern and southern sections of the area (8–50 kg m-

2). From a generalised perspective these areas coincide with particular land uses not 

dedicated to cropping for example in forested areas, along watercourses and grazing 

areas. The cropping areas, situated in the northern and western sections of the area 

have the lowest carbon storage (1–7 kg m-2).  This trend is similar for the 

description of the spatial variability of AWC. Here, AWC ranged between 0.07–

0.17 m to a depth of 1m, with an average of 0.13 m (Figure 2.3.5b). For the 

cropping areas to the north-west, AWC ranged mostly between 0.09–0.12 m.  

The whole-soil profile maps (displayed as depth increments) of carbon storage 

and available water capacity are shown in Figure 2.3.6 and Figure 2.3.7 

respectively. It can be observed that carbon is more abundant in the surface layers 

than in the sub-surface layers. The amount of carbon in the surface layer (0–10cm) 

of the cropping soils ranges between 6–9 kg m-3. While for areas with natural 

vegetation, volumetric carbon ranges between 15–51 kg m-3 at the soil surface. 

AWC in the 0–10 cm layer across the study area is relatively homogeneous 

where it ranges between 0.12 to 0.205 m m-1, the lowest values occurring where 

cropping is practiced in the west of the study area.  In all cases AWC decreases with 

the increase in soil depth. However, the rate of decrease in soil water is higher in 

areas where the land cover is either under native vegetation or pasture. 
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Figure 2.3.5. Predicted total carbon (kg m-2) and available water capacity (mm) to a 

depth of 1m across the Edgeroi study area. 
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Figure 2.3.6. Predicted soil profile carbon (kg/m3) to 1m displayed in 8 profile 

layers. 
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Figure 2.3.7. Predicted soil profile available water capacity (m/m) to 1m displayed 

in 8 profile layers. 

  



Chapter 2 – Mapping continuous depth functions of soil carbon storage and available water capacity 
  

69 
 

2.3.6. Scenario-based queries of the generated soil geo-database. 

By calculation, the geo-databases generated in this study each contain over 200 

million pieces of information (210 370 lateral or grid square observations × 100 

depth observations) that describe the vertical and lateral variability of carbon 

storage and AWC in the Edgeroi area.  

As can be observed in Figure 2.3.8a. the depth at which soil carbon drops below 

1% is quite variable across the study area, where it ranges from 1cm to over 1m, 

with the average depth at  21cm. The cropping areas situated mostly on the western 

areas of the study area tend to have the highest concentration of soils where in the 

top 5cm of soil,  soil carbon falls below 1%. In most cases in these areas, even at 

2cm below the surface, soil carbon has already decreased to below 1%. Conversely, 

the areas that do not appear to be cropped maintain soil carbon levels above 1% to 

greater depths. The range of depths at which soil carbon decreases to below 1% is 

much larger than that observed in the areas where cropping is practiced and would 

be predominantly due to land use (grazing as opposed to dense vegetation etc) and 

other factors such as parent materials and proximity to waterways.    

There is some correlation between the depth at which soil carbon decreases to 

below 1% and depth at which the cumulative sum of carbon equals 5 kg m-2 (Figure 

2.3.8b). This simple relationship highlights the negative exponential distribution of 

carbon in a soil profile, where carbon is most concentrated at the surface but 

decreases exponentially with increased soil depth. Therefore, the soils with low 

carbon storage i.e. greater depths required to attain 5 kg m-2, are the ones that have 

initially low concentrations of carbon at the soil surface. Despite a number factors 

determining the variability of carbon across the study area the average depth 

required to attain 5 kg m-2 was found to be 50 cm. 

In terms of the soil depth required to attain 100 mm of AWC (Figure 2.3.8c), the 

results indicated that the shallowest depth needed was 55 cm. However the 

frequency of this phenomenon occurring was relatively sparse and tended to be 

concentrated close to waterways or sources of water. Nevertheless the average depth 

required to attain 100 mm of AWC was 79 cm. There were some localised areas 

where greater than 1m was required. While variability in depth required does not 

appear significant, which could be due to a similarity in climate, a pattern of land 

use effect appears evident. Here the areas that have cropping have marginally less 
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AWC than those that do not, reflecting both an increased pressure on AWC to 

sustain crops and an increase in evaporation due to cultivation effects.      
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Figure 2.3.8. Maps of scenario-based queries. A) Depth at which soil carbon 

decreases to below 1%. B) Depth at which cumulative total of soil carbon equals 
5kg m-2. C) Depth at which cumulative sum of AWC equals 100mm. 
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2.4. Discussion 

The Edgeroi area represents an ideal location for testing the methodologies of this 

study. First, the placement of survey sites in a mostly triangular grid means that site 

location is random with respect to the topography, landuse and soil type (McGarry 

et al. 1989). Secondly, the density of observations at each site ensures that the 

vertical distribution of soil properties is sufficiently represented.  

Our prediction models of carbon and AWC were able to account for 44% of the 

variation of these properties across the study area. Similar accuracy assessments of 

models have also been reported for other digital soil mapping studies, for example, 

Ryan et al. (2000) and Florinsky et al. (2001).  Broadly, these results are acceptable 

given that for quantitative soil spatial models, R2 over 70% are unusual and values 

of 50% or less are common (Beckett and Webster, 1971). Our studies show that 

while the shape of the predicted spline depth functions is determined by the 

observed soil data, their flexible and sensitive nature makes them quite conducive 

for digital soil mapping purposes as we can fit them to any type of soil property and 

then derive information from them to use as model inputs. Post-modelling, the 

reconstruction of splines, results in densely populated datasets with fine vertical 

resolution (1 cm) in which can be queried as per the intentions of the user.  

Validation results (R2) of between 20-27% and 8–29% for carbon and AWC 

respectively indicated that the predictions were not as good as those generated by 

the prediction model. These results are confounding, given that our predictions at 

specific measured depths of the soil profile were of much greater agreement. 

Nevertheless, I did not expect to improve upon the results of the calibration models 

as we are trying to predict soil depth functions just from a suite of environmental 

variables. Many studies of mapping continuous soil properties are rarely validated. 

Studies that have, such as Minasny et al. (2006) (R2= 50%), and Stoorvogel et al. 

(2008) (R2= 8–23%) as examples, also reported slightly disappointing validation 

results. In this study, the slightly disappointing results could have stemmed from the 

fact that the models performed better for predicting surface soil conditions 

compared to sub-surface conditions (Minasny et al. 2006). Particularly for AWC, 

there was significant error propagation with depth. While the environmental 

variables that were used to predict carbon and AWC are important sources of 

variability, it is likely I have not fully realised other sources of variability. In other 
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words, I may have captured most of the variation of these soil properties at the soil 

surface using the existing data sources but I need to explore and seek out current 

and new data sources that will also explain their variation in the soil sub-surface. 

Additionally, I also found that the spatial distribution of residuals displayed very 

little meaningful variation. This affected the final model predictions in that only a 

slight improvement was achieved when they were incorporated into predictions. 

Other studies such as Odeh et al. (1995) and Stacey et al. (2006) have reported 

greater success using the regression kriging approach I implemented for this study. 

The inability to capture completely, the variation of soil properties both the 

vertical and lateral space, should less be interpreted as a method failure, than as a 

limitation of the “low-cost” data input data set used in this study. It is common to 

use legacy soil data sets in DSM of the nature used in this study—often the quality 

is poorer in terms of sparseness and vertical resolution of observations. Thus one 

impetus for improving model performance and better detection of soil variability is 

to invest in further sampling from the mapping domain.   

On the basis of this study, and the usage of low-cost data, one is still able to 

quantify the uncertainties or error in predictions relating to the soil spatial prediction 

functions. This uncertainty could be translated as being a combination of both 

metrical and structural uncertainty (Rowe 1994). Metrical uncertainty is 

unavoidable because of our reliance on models to define real objects. For example, 

the various terrain attributes calculated from a digital elevation model are based on a 

series of polynomial equations of various orders fitted using least-squares 

(Skidmore 1989). However, structural uncertainty in this study would be the most 

prevalent due to the fact that I am modelling environmental phenomena. Natural 

systems are inherently complex and difficult to define (Young 1998); a collection of 

environmental factors alone will never account for the entire variability of natural 

processes.  In a lot of cases, models of natural systems do not account for 

interactions between factors, or more often there are a whole suite of other factors 

which are not considered or difficult to interpret (Young 1998). This brings us back 

to the point discussed previously where new and alternative data sources are needed 

if I want to capture more of the soil variability in both a lateral and vertical space.  

While it is likely that improvements can be made if I follow these suggestions, 

what I really want is to be able to account for the known and unknown structural 

and metrical uncertainties within our predictions. Estimation of the uncertainty for 
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model outputs can be approached via a number of alternatives which include 

forecasting model outputs probabistically; analysing the statistical properties of 

model outputs and observed data; usage of simulation and re-sampling based 

techniques; or via methodologies based on fuzzy theory and machine learning 

techniques (Shrestha and Solomatine 2006). The study completed by Shrestha and 

Solomatine (2006) propose a novel method whereby they express uncertainty in the 

form of two quantiles (prediction interval). Chapter 3 will explore these ideas 

further, but expressing a prediction within a defined interval rather than having a 

single estimate seems an appropriate route to follow when we are modelling 

difficult environmental processes over large spatial scales. 

Overall, the maps of carbon storage and AWC are the ‘end-product’ of a richly 

populated dataset of their variability in the Edgeroi area. At first glance, 

interpretations can be made to describe the pattern of variability. More importantly, 

behind these maps is an invaluable geo-database of quantitative soil information 

suited to the requirements of end-users for the assessment and monitoring of soil 

resources. The versatility of this data was demonstrated by the three scenarios that 

queried the underlying geo-database.  

2.5. Conclusions 

• Spline functions are sensitive and flexible to the variation of both carbon and 

AWC with soil depth and are thus quite amendable to use within the digital 

soil mapping framework. 

• This study identifies two types of predictive uncertainty- structural and 

metrical. Our validation results indicate there is a need to address these 

forms of uncertainty. By incorporating a measure of uncertainty within 

predictions, improving the model calibration process and using new and 

existing alternative data sources as model variables, I envisage more reliable 

estimates can be generated to describe the lateral and vertical variation of 

soil in prescribed study areas.     

• This study provides an example where a rich soil attribute geo-database can 

be generated from a limited soil dataset. I highlighted the functionality of 

this geo-database in terms of data enquiry for user-defined purposes. 
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Appendix 2.1. Derivation of the equal-area spline function 

The following is the derivation for the quadratic smoothing spline:  

Given measurements for soil properties at n layers in a soil profile, the boundaries 

of the layers are given in increments (u1, v1), (u2, v2), … (un, vn), given that u1 < v1 ≤ 

u2 < v2 ≤ … ≤ un < vn. The measurement of the bulk sample from layer i is assumed 

to reflect the mean attribute level, apart from measurement error. Mathematically, 

the measurements are modelled as: 

𝑦𝑦𝑖𝑖 = 𝑓𝑓𝑖̅𝑖 + 𝑒𝑒𝑖𝑖   

[a2.1.1] 

 

It is assumed that the true soil attribute values vary smoothly with depth. This is 

translated into mathematical terms. I denote depth by x, and the depth function 

describing the true attribute values by f(x); which mean that f(x) and its first 

derivative f’(x) are both continuous, and that f’(x) is a quadratically integrable 

function. 

The depths of the boundaries of the n layers are given by xn < xn, … <xn. Where 𝑓𝑓𝑖̅𝑖  is 

the mean value of f(x) over the interval (xi-1, xi) and ei are measurement errors with 

mean 0 and variance σ2. The f(x) represents a spline function, which can be found 

by minimising: 

 
1
𝑛𝑛
∑ �𝑦𝑦𝑖𝑖 − 𝑓𝑓𝑖̅𝑖�

2𝑛𝑛
𝑖𝑖=1 + 𝜆𝜆 ∫ [𝑓𝑓′(𝑥𝑥)]2𝑥𝑥𝑛𝑛

𝑥𝑥0
𝑑𝑑𝑑𝑑    

[a2.1.2] 

 

 

 

The quadratic spline 

I define a quadratic spline s(x), in each layer; it conforms to a quadratic polynomial 

p(x). The polynomials pi(x) and pi+1(x) for two adjacent layers meet smoothly at the 

boundary. The curve is given by: 

𝑠𝑠(𝑥𝑥) = 𝑝𝑝𝑖𝑖(𝑥𝑥)  for 𝑥𝑥𝑖𝑖−1 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑖𝑖 , i = 1, 2, …, n. 
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[a2.1.3] 

The smoothness conditions are: 

𝑝𝑝𝑖𝑖(𝑥𝑥𝑖𝑖) = 𝑝𝑝𝑖𝑖+1(𝑥𝑥𝑖𝑖)    

𝑝𝑝𝑖𝑖′(𝑥𝑥𝑖𝑖) = 𝑝𝑝𝑖𝑖+1
′ (𝑥𝑥𝑖𝑖) for i = 1, 2, …, n – 1, and 

𝑝𝑝1(𝑥𝑥0) = 0    

𝑝𝑝𝑛𝑛′ (𝑥𝑥𝑛𝑛) = 0  

[a2.1.4] 

The latter two conditions mean that s(x) is a natural spline. The points �𝑥𝑥𝑖𝑖 , 𝑠𝑠(𝑥𝑥𝑖𝑖)� at 

the layer boundaries are called knots, and each xi is referred to as a knot location. I 

define: 

𝑓𝑓𝑖𝑖 = 𝑠𝑠(𝑥𝑥𝑖𝑖) = 𝑝𝑝𝑖𝑖(𝑥𝑥𝑖𝑖) 

𝑏𝑏𝑖𝑖 = 𝑠𝑠′(𝑥𝑥𝑖𝑖) = 𝑝𝑝𝑖𝑖′(𝑥𝑥𝑖𝑖)  

for   

i = 1, 2, …, n. 

[a2.1.5] 

Quadratic polynomials 

A quadratic polynomial can be written as: 

𝑝𝑝(𝑥𝑥) = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥 + 𝛽𝛽2𝑥𝑥2 

[a2.1.6] 

with coefficients 𝛽𝛽0,𝛽𝛽1,𝛽𝛽2. In the case where the polynomial is over depth interval 

(u, v) where u > v, then the coefficients can be determined from: 

 𝑝𝑝′(𝑡𝑡),  𝑝𝑝′(𝑢𝑢),  𝑝𝑝� = ∫ 𝑝𝑝(𝑥𝑥)𝑑𝑑𝑑𝑑/(𝑢𝑢 − 𝑣𝑣)𝑢𝑢
𝑡𝑡  

[a2.1.7] 

This is expressed as: 

 

𝑝𝑝(𝑥𝑥) =  𝑝𝑝� −  𝑝𝑝′ (𝑢𝑢)+2 𝑝𝑝′ (𝑣𝑣)
6

Δ + 𝑝𝑝′(𝑣𝑣) (𝑥𝑥 − 𝑣𝑣) +  𝑝𝑝′ (𝑢𝑢)+2 𝑝𝑝′ (𝑣𝑣)
2Δ

(𝑥𝑥 − 𝑣𝑣)2     

for 𝑣𝑣 ≤ 𝑥𝑥 ≤ 𝑢𝑢, where ∆ = (𝑢𝑢 − 𝑣𝑣). 

[a2.1.8] 
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Smoothing quadratic splines 

Since f(x) is represented as a natural quadratic spline s(x), f’(x) is a linear function 

between knots. For any linear function l(x), we have: 

� [𝑓𝑓′(𝑥𝑥)]2
𝑡𝑡

𝑢𝑢
𝑑𝑑𝑑𝑑 =

𝑢𝑢 − 𝑣𝑣
3

(𝑙𝑙(𝑣𝑣)2 + 𝑙𝑙(𝑢𝑢)𝑙𝑙(𝑣𝑣) + 𝑙𝑙(𝑢𝑢)2) 

[a2.1.9] 

Hence: 

� [𝑓𝑓′(𝑥𝑥)]2
𝑥𝑥𝑛𝑛

𝑥𝑥0

𝑑𝑑𝑑𝑑 = �
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1

3
�𝑏𝑏𝑖𝑖−1

𝑛𝑛 + 𝑏𝑏𝑖𝑖−1 𝑏𝑏𝑖𝑖 + 𝑏𝑏𝑖𝑖2�
𝑛𝑛

𝑖𝑖=1

 

[a2.1.10] 

The condition that f(x) is continuous at the internal knots yields: 

𝑝𝑝𝑖𝑖(𝑥𝑥𝑖𝑖) = 𝑝𝑝𝑖𝑖+1(𝑥𝑥𝑖𝑖) for i = 1, 2, …, n – 1. 

[a2.1.11] 

Using (a2.1.8), this translates into a set of equations: 

𝑏𝑏𝑖𝑖−1(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1) + 2𝑏𝑏𝑖𝑖(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖−1) + 𝑏𝑏𝑖𝑖+1(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖) = 6�𝑓𝑓𝑖̅𝑖+1 − 𝑓𝑓𝑖̅𝑖� 

for i = 1, 2, …, n – 1. 

[a2.1.12] 

This can be expressed in a matrix form. Let R be the (n – 1) × (n – 1) symmetric 

tridiagonal matrix with diagonal elements Rii = 2 (xi+1 –  xi-1) and off-diagonal 

elements Ri+1,i =Ri,i+1 = xi+1 – xi. Then: 

� [𝑓𝑓′(𝑥𝑥)]2
𝑥𝑥𝑛𝑛

𝑥𝑥0

𝑑𝑑𝑑𝑑 =
1
6
𝐛𝐛′𝐑𝐑𝐑𝐑 

[a2.1.13] 

Equation a2.1.2 becomes: 

1
𝑛𝑛
�𝐲𝐲 − 𝐟𝐟�̅2

22
′ �𝐲𝐲 − 𝐟𝐟�̅

2
+
𝜆𝜆
6
𝐛𝐛′𝐑𝐑𝐑𝐑 

[a2.1.14] 
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Minimising with respect to 𝑓𝑓,̅ the solution is represented as: 

[𝑰𝑰 + 6𝑛𝑛𝑛𝑛(𝐑𝐑−1𝐐𝐐′)′𝐑𝐑(𝐑𝐑−1𝐐𝐐′)]𝐟𝐟̅ = 𝐲𝐲 

[a2.1.15] 

Where I is the identity matrix, Q is  a (n – 1) × n matrix with Qii = -1, Qi,i+1 = 1 and 

Qij = 0 otherwise. Solving this equation yields the fitted layer values 𝑓𝑓̅̂. The fitted 

values at the knots can be obtained from: 

𝐛̂𝐛 = 6𝐑𝐑−1𝐐𝐐′𝐟𝐟̅̂ . 

[a2.1.16]
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Since we can never know anything for sure, it is simply not worth searching for 

certainty; but it is well worth searching for truth; and we do this chiefly by searching 

for mistakes, so that we have to correct them.  

[Karl Popper 1994] 
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Chapter 3 

Empirical estimates of uncertainty for mapping continuous depth 

functions of soil attributes. 

Summary 

In this chapter an empirical method is used where model output uncertainties are 

expressed as a prediction interval (PI) of the underlying distribution of prediction 

errors. This method obviates the need to identify and determine the contribution of 

each source of uncertainty to the overall prediction uncertainty.  Conceptually, in 

the context of digital soil mapping, rather than a single point estimate at every 

prediction location, a PI, characterised by upper and lower prediction limits, 

encloses the prediction (which lies somewhere on the interval) and ideally the true 

but unknown value 100(1 − 𝛼𝛼)% of times on average the target variable (typically 

95%). The idea is to partition the environmental covariate feature space into 

clusters which share similar attributes using fuzzy k-means with extragrades. Model 

error for predicting a target variable is then estimated from which cluster PIs are 

constructed on the basis of the empirical distribution of errors associated with the 

observations belonging to each cluster. PIs for each non-calibration observation 

are then formulated on the basis of the grade of membership each has to each 

cluster.      

I demonstrate how we can apply this method for mapping continuous soil depth 

functions. First, using soil depth functions and digital soil mapping (DSM) methods, 

I map the continuous vertical and lateral distribution of organic carbon (OC) and 

available water capacity (AWC) across the Edgeroi district in north-western NSW, 

Australia. From those predictions I define a continuous PI for each prediction node, 

generating upper and lower prediction limits of both attributes. From an external 

validation dataset, preliminary results are encouraging where 91% and 93% of the 

OC and AWC observations respectively fall within the bounds of their 95% PIs. 

Ideally, 95% of instances should fall within these bounds.  
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3.1. Introduction 

From chapter 2, a novel method for digital soil mapping the whole-profile 

distribution of soil properties was introduced. This chapter extends this work by 

investigating how we might go about predicting the uncertainties of these predicted 

maps.  

Soil scientists are acutely aware of the current issues concerning the natural 

environment because our expertise is intimately aligned with their understanding and 

alleviation. We know that sustainable soil management alleviates soil degradation, 

improves soil quality and will ultimately ensure food security. Critical to better soil 

management is information detailing the soil resource, its processes and its variation 

across landscapes. Consequently, under the broad umbrella of ‘environmental 

monitoring’, there has been a growing need to acquire quantitative soil information 

(McBratney et al. 2003; Grimm and Behrens 2010).  The concerns of soil-related 

issues in reference to environmental management were raised by McBratney (1992) 

when stating that it is our duty as soil scientists, to ensure that the information we 

provide to the users of soil information is both accurate and precise, or at least of 

known accuracy and precision. 

However, a difficulty we face is that soil can vary, seemingly erratically in the 

context of space and time (Webster 2000). Thus the conundrum in model-based 

predictions of soil phenomena is that models are not ‘error free’. The unpredictability 

of soil variation combined with simplistic representations of complex soil processes 

inevitably leads to errors in model outputs.  

We do not know the true character and processes of soils and our models are 

merely abstractions of these real processes. We know this; or in other words, in the 

absence of such confidence, we know we are uncertain about the true properties and 

processes that characterise soils (Brown and Heuvelink 2005). The key is therefore to 

determine to what extent our uncertainties are propagated in our models of these real-

world processes.  

In modelling exercises, uncertainty of the model output is the summation of the 

three main sources generally described as: model structure uncertainty, model 

parameter uncertainty and model input uncertainty (Minasny and McBratney 2002b; 

Brown and Heuvelink 2005). The general procedure is to determine independently 

the contribution of each source to the overall uncertainty. One obvious issue of this is 
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that generating estimates of uncertainty for each of the sources could become a 

prohibitive exercise in terms of time and cost.  

With this in mind, there are a number of approaches to estimate the uncertainty of 

model outputs. One of these is an empirical approach in which the residuals between 

modelled outputs and corresponding observed data are used to formulate a prediction 

interval (PI). Such an approach was proposed by Shrestha and Solomatine (2006) 

where uncertainty is expressed in the form of two quantiles of the underlying 

distribution of model error (residuals). It is stated that the PI explicitly takes into 

account all sources of uncertainty and circumvents attempts to separate out the 

contribution of each source (Shrestha and Solomatine 2006; Solomatine and 

Shrestha, 2009). The purpose of the empirical methodology is to derive the upper and 

lower prediction limits based on the model errors, and since it is estimated through 

an empirical distribution, it is not necessary to make any assumption about residuals 

(Solomatine and Shrestha 2006).  Their idea is to partition a feature space into 

clusters (with a fuzzy k-means routine) which share similar model errors. A PI is 

constructed for each cluster on the basis of the empirical distribution of residual 

observations that belong to each cluster. A PI is then formulated for each observation 

in the feature space according to the grade of their memberships to each cluster. They 

applied this methodology to artificial and real hydrological data sets and it was found 

to be superior to other methods which estimate a PI. The Shrestha and Solomatine 

(2006) approach computes the PI independently and while free of the prediction 

model structure, it requires only the model or prediction outputs. Tranter et al. (2010) 

extended this approach to deal with observations that are outside of the training 

domain.  

Application of the Shrestha and Solomatine (2006) approach for estimating model 

output uncertainty has not previously been attempted in a digital soil mapping 

(DSM) framework where uncertainties are infrequently reported (Grunwald, 2009). 

Such was the case in Chapter 2 where a methodology for mapping continuous depth 

functions of soil attributes was introduced. Other than to identify the sources, no 

attempt was made to address the contribution of each source to the overall 

uncertainty. Given the modest results in terms of accuracy, particularly with 

increasing soil depth, it was assumed that significant model uncertainties existed. It 

is thought that, given the complexity of the modelling required to generate 
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predictions both in a vertical and lateral space, conventional forms of uncertainty 

analysis would be prohibitive and time consuming. A pragmatic approach to this 

dilemma is to use an empirical methodology in a similar fashion to that presented by 

Shrestha and Solomatine (2006) and Tranter et al. (2010) who view the model 

residuals as the best quantitative measure of the discrepancy between a model and 

the modelled real-world process. The efficiency of the method means it could be 

useful when we are dealing with soil spatial prediction functions that involve a  

regression kriging approach or machine-based models where there is no closed-form 

analytical solution for deriving model parameter uncertainties.  

The method presented in this chapter modifies slightly the Shrestha and 

Solomatine (2006) and Tranter et al. (2010) approach to enable it for a DSM 

framework. It extends the idea of model uncertainty by extrapolating the uncertainty 

parameters across the extent of a defined area so that mapping the continuous depth 

functions involves both the mapping of predictions and their uncertainties. In 

addition to presenting this modified approach to uncertainty analysis, I also perform 

an external validation in order to gauge how successfully this method works for this 

particular application of DSM. 

3.2. Theory and scope of work 

3.2.1. The prediction interval as a measure of uncertainty 

The characteristics of a PI include both upper and lower prediction limits. The 

interval between the prediction limits constitutes the PI (Figure 3.2.1). Given a 

prescribed probability such as a 95% confidence level, a future unknown value is 

expected to lie somewhere along this interval. There is a clear distinction between a 

PI and a confidence interval (CI), however. A CI tells us how well or how accurate is 

the estimate of a true regression to predict one variable from another. Conversely, the 

PI deals with the accuracy of the prediction with respect to the corresponding 

observed value. Thus a PI is always wider than a CI because it includes both the 

uncertainty in knowing the value of the population mean, and the uncertainty of the 

new measurement (Altman and Gardner 1988).  
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Figure 3.2.1. The prediction interval, characteristic features and general descriptive 

terminology. Adapted from Shrestha and Solomatine (2006). 

Calculating the PI for a given observation following the method of Shrestha and 

Solomatine (2006) is performed independently of the model building or calibration 

process. Solomatine and Shrestha (2009) refer to this as ‘‘uncertainty estimation 

based on local errors and clustering’’ (UNEEC). The purpose of the UNEEC is to 

derive the upper and lower prediction limits based on the model error, and since it is 

estimated through an empirical distribution, it is not necessary to make any 

assumption about residuals (Solomatine and Shrestha 2009). First a user-defined 

class of regression is performed to estimate the target variable from one or a suite of 

predictor variables or covariates. The prediction outputs are compared to their 

observed corresponding values; the residuals are recorded.  Using a clustering 

routine such as fuzzy k-means (Bezdek 1981), the calibration dataset is partitioned 

into k clusters corresponding to different values or distributions of the residuals. It is 

assumed that the region in the feature space associated with any particular cluster has 
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similar residuals or residuals with similar distributions. Once the clusters have been 

identified, the PIs for each cluster are computed from empirical distributions of the 

corresponding residuals. To construct a 100(1 − 𝛼𝛼)% PI, the (𝛼𝛼/2) × 100 and 

(1 − 𝛼𝛼/2) × 100 percentile values are taken from the empirical distribution of 

residuals for the lower and upper prediction limits respectively. The computation of 

the PI for each calibration observation is straightforward if it belongs entirely to one 

cluster as would be the case where the input space is divided into crisp clusters e.g. 

hard clustering. However in the case of fuzzy clustering, where each observation 

belongs to all available clusters with respect to a membership grade, a “fuzzy 

committee” approach is used where the PI is computed using the weighted mean of 

the PI of each cluster (Shrestha and Solomatine 2006). This can be defined 

mathematically as: 

𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿 =  ∑ 𝑚𝑚𝑖𝑖𝑖𝑖
𝑐𝑐
𝑖𝑖=1 𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗𝐿𝐿  

𝑃𝑃𝑃𝑃𝑖𝑖𝑈𝑈 =  ∑ 𝑚𝑚𝑖𝑖𝑖𝑖
𝑐𝑐
𝑖𝑖=1 𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗U   

[3.2.1] 

where 𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿and  𝑃𝑃𝑃𝑃𝑖𝑖𝑈𝑈  correspond to the weighted lower and upper PI for the ith 

observation.  𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑈𝑈  are the lower and upper PIs for each cluster j, and 𝑚𝑚𝑖𝑖𝑖𝑖  

is the membership grade  of ith observation to cluster j. Finally, the lower and upper 

prediction limits (𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿and 𝑃𝑃𝑃𝑃𝑖𝑖𝑈𝑈  respectively) are derived for each calibration 

observation by adding the prediction (from the prediction model) to 𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿and 𝑃𝑃𝐼𝐼𝑖𝑖𝑈𝑈 . 

3.2.2. Validating the prediction interval 

Validation of the PI is performed externally with a dataset separate from the 

calibration dataset. In the context of DSM, data splitting or collecting additional 

samples using some sort of probability sampling are the most common methods for 

which validations are then based upon; see Grinand et al. (2008) and Kempen et al. 

(2009) for recent examples of each. The procedure for validating (the PI) follows 

closely with Shrestha and Solomatine (2006) in which the idea is to simply determine 

whether each of the validating observed values is inside their respective prediction 

limits. By definition, the prediction limits enclose the true but unknown value 

(1 − 𝛼𝛼)% of times on average (typically 95%). The performance of the model is 

therefore evaluated by means of a prediction interval coverage probability (PICP) 
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(Shrestha and Solomatine 2006) whereby the PICP is the probability that all 

observed values fit within their prediction limits and is estimated by: 

PICP =  1
𝑉𝑉

   count  𝑖𝑖     

i: 𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿 ≤ 𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 ≤  𝑃𝑃𝑃𝑃𝑖𝑖𝑈𝑈   

[3.2.2] 

where V is the number of observations in the validation dataset. The clustering 

technique and uncertainty model is said to be optimal when the PICP value is close 

to 100(1 − 𝛼𝛼)%.   

3.2.3. Fuzzy Clustering 

Particularly important in this study is what methodology of clustering is used, 

especially in the context of soil variability and identifying regions in a study area 

where predictions are more certain in some areas in comparison to other areas. In 

general terms, clustering is the unsupervised partitioning of a feature space into 

natural groups or clusters which share some measure of similarity. Many clustering 

techniques are in existence, which Jain et al. (1999) comprehensively review. In the 

domain of soil science, the most widespread clustering algorithms are non-

hierarchical or in other words, have a partitional basis (McBratney and Odeh 1997). 

The k-means algorithm is the simplest partitional clustering method and aims to 

minimise the within-class sum of square distances between the input space 

observations and the corresponding cluster centroids (McQueen 1967). An extension 

of the k-means algorithm is fuzzy k-means (FKM) which allows each observation a 

degree of membership to j clusters (Bezdek et al. 1984). Because soil is both 

spatially and temporally continuous, the FKM approach to classification intuitively 

appealing. The FKM algorithm minimises the objective function: 

𝐽𝐽(𝐂𝐂,𝐌𝐌) =  ∑ ∑ 𝑚𝑚𝑖𝑖𝑖𝑖
𝜑𝜑𝑐𝑐

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1 𝑑𝑑𝑖𝑖𝑖𝑖2   

i = 1, …, n;  j = 1, …, c            

[3.2.3] 

where C is the 𝑐𝑐 × 𝑝𝑝 matrix of class centroids where c is the number of clusters and 

p is the number of variables; M is the 𝑛𝑛 × 𝑐𝑐 matrix of partial memberships, where n 

is the number of observations; 𝑚𝑚𝑖𝑖𝑖𝑖 ∈ [0,1] is the partial membership of the ith 

observation to the jth cluster, 𝜑𝜑 ≥ 1 is the fuzziness exponent. Increasing 𝜑𝜑 results in 
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a fuzzier partition between clusters. The square distance between the ith observation 

and jth cluster centre is 𝑑𝑑𝑖𝑖𝑖𝑖2 . A more detailed explanation of the FKM algorithm can 

be found in Bezdek (1981). Essentially FKM gives the number of clusters; it defines 

class centroids based on each variable and calculates optimally the memberships of 

each observation to each defined cluster.  

McBratney and de Gruijter (1992) recognised a limitation of the FKM algorithm 

in that it cannot distinguish between observations very far from the cluster centroids 

and those at the centre of the centroid configuration. The observations were termed 

extragrades as opposed to intragrades, which are the observations that lie between the 

main clusters. The extragrades are considered the outliers of the data set and have a 

distorting influence on the configuration of the main clusters (Lagacherie et al. 

1997). McBratney and de Gruijter (1992) developed an adaptation to the FKM 

algorithm which distinguishes observations that should belong to an extragrade class. 

The FKM with extragrades algorithm minimises the objective function: 

𝐽𝐽𝑒𝑒(𝐂𝐂,𝐌𝐌) = 𝛼𝛼��𝑚𝑚𝑖𝑖𝑖𝑖
𝜑𝜑

𝑐𝑐

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

𝑑𝑑𝑖𝑖𝑖𝑖2 + (1 − 𝛼𝛼)�𝑚𝑚𝑖𝑖∗
𝜑𝜑

𝑛𝑛

𝑖𝑖=1

�𝑑𝑑𝑖𝑖𝑖𝑖−2
𝑐𝑐

𝑗𝑗=1

 

[3.2.4] 

The notation is similar to the FKM algorithm except where 𝑚𝑚𝑖𝑖∗ denotes the 

membership to the extragrade class. This function also requires the parameter alpha 

(𝛼𝛼) to be defined which determines the degree of importance attributed to the 

extragrade class. Details of FKM with extragrades are comprehensively discussed in 

McBratney and de Gruijter (1992) and Odeh et al. (1992). 

Shrestha and Solomatine (2006) used a FKM algorithm for their clustering routine 

which also implemented the Euclidean distance measure where equal weight is given 

to all the variables in the feature space. For this study I implement the FKM with 

extragrades algorithm for the reasons described above. Tranter et al. (2010) also 

point out that extragrade instances exist spatially in regions of low density calibration 

data. As a consequence, this fact also confers a low reliability of prediction in these 

areas, which is an important consideration in the context of DSM. A Mahalanobis 

distance measure is also used in our procedure and for reasons discussed in more 

detail later is used on the basis that I cluster the feature space based on a suite of 

available soil prediction covariates rather than the prediction errors themselves. The 
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Mahalanobis distance takes into account the correlation between variables in the 

feature space.  

 3.2.4. Adaptation of the of the UNEEC approach for digital soil mapping of 

continuous depth functions 

In order to use the UNEEC procedure of Shrestha and Solomatine (2006) and 

Solomatine and Shrestha (2009) within a DSM framework, some critical 

modifications and assumptions need to be made. The first involves the feature space 

clustering such that the model errors are calculated on the basis of the available soil 

state factors. The idea is to perform the clustering routine prior to running the 

prediction model after which the cluster PIs are then formulated. The key assumption 

of this chapter therefore is that particular areas within a landscape will have similar 

residuals or distribution of residuals and ultimately share a similar range of 

uncertainty.  

The second modification or moulding to a DSM framework is the question of how 

I extend the PI to prediction nodes that have not been visited. Like in any DSM 

project, training rules are constructed on calibration data which are then extrapolated 

across a study area where only the prediction covariates are known. This approach is 

maintained for estimating the uncertainties at these sites whereby the cluster 

centroids derived from the calibration procedure are used to determine the 

membership grade of each prediction node across the study area to each cluster. 

Once these are known, 𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿and 𝑃𝑃𝑃𝑃𝑖𝑖𝑈𝑈can be calculated after which 𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿and 𝑃𝑃𝑃𝑃𝑖𝑖𝑈𝑈  are 

derived once the model prediction is made.   

In order to derive a continuous depth estimation of the upper and lower prediction 

limits for each prediction node, I follow the same routine as for mapping continuous 

functions of soil attributes as presented in chapter 2. Once the standard depths of 

prediction are determined, an uncertainty model is used to estimate the PI at each 

depth increment. Using the PIs at each depth as parameters, I can then perform a 

mass-preserving spline reconstruction to generate continuous representations of the 

upper and lower prediction limits to a prescribed maximum depth.  

3.2.5. Procedure 

There are thus three components that need to be adhered to in order to replicate this 

approach in a DSM framework. The first of these is the prediction model which 



Chapter 3 – Empirical estimates of uncertainty for mapping continuous depth functions of soil 
attributes 
 

96 
 

essentially recreates the method presented in chapter 2 for using splines and 

regression kriging modelling for the prediction of soil attributes at standardised 

depths. The second component involves the training of the empirical uncertainty 

model, from which cluster PIs can be derived. For both components, validation is 

performed using an independent dataset. In this study, both calibration and validation 

sets are the same for these two components. The third component involves the 

mapping of the predictions and associated PIs in the lateral and vertical dimensions. 

A summary of the stepwise procedure for achieving these outcomes is as follows and 

illustrated in Figure 3.2.2: 

 

Figure 3.2.2. Flow diagram of the general procedure for achieving the outcome of 
mapping predictions and their uncertainties (upper and lower prediction limits) 
within a digital soil mapping framework. The 3 components for achieving this 

outcome are the prediction model, the empirical uncertainty model and the mapping 
component. 

 

• Soil data is pre-processed then arranged for analysis. The framework I present 

here applies to available soil datasets where soil observations within a profile have 
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been made at horizon and/or regular depth increments. Often the depths of 

observation between profiles are not the same;  

• Mass preserving spline functions (Bishop et al. 1999) are used to standardise the 

depth increments of prediction for all available site locations;  

• The dataset is then spatially intersected with a suite of available environmental 

covariates; 

• The dataset is then randomly split into two; I use 85% of total site observations 

for calibration and 15% for validation.    

The prediction model 

• The calibration dataset is used to train a prediction model via a regression 

technique in which the prediction variables are the environmental covariates; 

• For validation of the prediction model, the training rules are extended to the 

validation data. Then evaluate statistically the accuracy of the predictions for each 

of the standard depths for example the root mean square error (RMSE; see 

equation 2.2.3 for derivation). It needs to be kept in mind that the validation data 

in this case are not the actual observations or ‘hard data’, but ‘soft data’ that in 

addition to sampling and measurement errors are prone also to interpolation errors 

due to the fitting of the splines. While not optimal, it is necessary to perform 

validation in this way (at the standardised depths) because the ‘hard data’ is rarely 

observed systematically at set depths from one profile to the next ;     

• The training rules are further saved for the mapping component. 

The empirical uncertainty model 

• Clustering is performed where the feature space is the suite of environmental 

covariates observed at each calibration site. Once the optimal number of clusters 

is determined, cluster centroids are saved; 

• Estimation of the model error is made. I would opt to use the same class of model 

as used in the prediction model component but generate predictions via a leave-

one-cross-validation method. The idea is that we save only the residual between 

the predicted (model output) and observed value at each standardised depth; 

• The highest membership value to a cluster determines which cluster each 

observation is assigned to. Cluster PIs (𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑈𝑈) are found for each cluster 
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on the basis of the distribution of residuals within each cluster. To construct a 

95% PIs (for each cluster) I take the lower 2.5% and upper 97.5% percentile 

values from the empirical distribution of residuals in each cluster; 

• Validation (using the validation dataset) of the uncertainty procedure involves 

construction of the PI for each observation i.e. 𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿and 𝑃𝑃𝑃𝑃𝑖𝑖𝑈𝑈  (Equation 1) where the 

requirements are the cluster PIs and cluster centroids, from which the cluster 

membership values can be derived. Adding the prediction of the soil attribute 

(from prediction model) to 𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿and 𝑃𝑃𝑃𝑃𝑖𝑖𝑈𝑈  yields the upper and lower prediction 

limits (𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿and 𝑃𝑃𝑃𝑃𝑖𝑖𝑈𝑈) for each validation observation. Calculating the PICP 

determines (for a given confidence level) the proportion of observed values which 

fit within their respective prediction limits (Equation 3.2.2). 

Mapping of the predictions and associated PI  

• Training rules from the calibration procedure are extended to all prediction nodes 

across a study area where only covariate information is available; 

• Cluster centroids from the uncertainty model are used to determine the 

membership grade each prediction node has to each cluster, from which 𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿and 

𝑃𝑃𝑃𝑃𝑖𝑖𝑈𝑈  are formulated; 

• Adding the model prediction to 𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿and 𝑃𝑃𝑃𝑃𝑖𝑖𝑈𝑈  yields the upper and lower prediction 

limits at each prediction node; 

• Continuous depth representations of the predictions and upper and lower 

prediction limits can be generated by using the mass-preserving spline 

reconstruction method where the observations at the standardised depths are the 

only required parameters. 

3.3. Material and Methods 

3.3.1. The Data 

I test the approach described above using actual soil data where our target properties 

are organic carbon (kg m-3) (OC) and available water capacity (m m-1) (AWC). The 

area from which the data has been collected is the Edgeroi district as described in 

section 2.2.1.  

Environmental covariates were compiled for the whole Edgeroi study area 

(≈1500km2) on a grid with spatial resolution of 90m × 90m. These included a digital 
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elevation model and its derivatives, Landsat 7 ETM+ images from 2003 and gamma 

radiometric data from airborne survey (Minty et al. 2009). Specifically, the 

environmental covariates used for analysis in this study were elevation, slope, altitude 

above channel network (AOCN), flow path length (FPL), multi-resolution index of 

valley bottom flatness (MRVBF) (Gallant and Dowling 2003) and SAGA wetness index 

which is similar to the topographic wetness index (TWI) (Boehner et al. 2002). Bands 1–

5 and 7 of the Landsat 7 ETM+ were used in addition to the Normalised Difference 

Vegetation Index (NDVI) and soil enhancement ratios of b3/b2, b3/b7 and b5/b7 

(Saunders and Boettinger 2007).  For gamma radiometric data, the percentage measure 

of radiometric K was used in addition to the ppm measures of both radiometric U and 

Th.      

For all soil profiles (341), the procedure as described in chapter 2 was used to fit 

splines to the observed values down to 1m. This generated continuous profile 

descriptions to 1m for both soil attributes. From the fitted splines of the observed 

data, the mean value of each soil attribute was derived at the specified depth 

increments of:  0–10, 10–20, 20–30, 30–40, 40–50, 50–70, 70–80, 80–100cm. These 

8 surfaces became the target inputs to be modelled against the suite of environmental 

covariates which were then intersected to the data based on the spatial location of 

each soil profile description. Lastly, the dataset was then randomly divided into two 

sets: 291 profiles for calibration and 50 profiles for validation. 

3.3.2. The prediction model 

3.3.2.1. Prediction model calibration 

In terms of the modelling process, the systematic approach for model calibration 

from chapter 2 was used to generate rules or formulae based on the relationship 

between calibration data at the eight specified depth increments and the suite of 

environmental covariates.  

3.3.2.2. Prediction model validation 

For validation, model formulae generated in the calibration procedure were used to 

derive the initial predictions of OC and AWC from the suite of environmental 

covariates that existed at each validating site. Kriging was used to interpolate the 

residuals at each validation observation based on the localised exponential variogram 

model of the 100 nearest residuals found for the calibration procedure. A final 
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prediction was derived from the summation of the model prediction and the 

interpolated residual. To determine the accuracy of the final predictions with their 

corresponding observed values I used the root mean square error (RMSE) and Lin’s 

Concordance Correlation Coefficient (CCC) as described in section 2.2.5. 

3.3.3. The empirical uncertainty model 

3.3.3.1. Uncertainty model calibration: Fuzzy clustering and formulation of cluster 

prediction intervals. 

To establish the optimal cluster size and 𝜑𝜑 value of the calibration data, fuzzy 

classification was performed with the FuzME software (Minasny and McBratney 

2002a). As discussed previously, in this study I used the FKM with extragrades 

function. The environmental covariates of the calibration data were arranged in a 

matrix of n observations × p covariates (291×19). Iteratively, using cluster sizes of 2 

through 15, the FKM with extragrades function ran using successive 𝜑𝜑 values 

ranging from 1 through 2 with step length of 0.01. For this study, along with an 

intuitive guide, I adopted an internal criterion approach to determine the optimal 

cluster size and 𝜑𝜑 value using both the modified partition entropy (MPE) and the 

derivative of the objective function with respect to the fuzzy exponent (𝜑𝜑) , – (𝛿𝛿𝛿𝛿/

𝛿𝛿𝜑𝜑)𝑐𝑐0.5 (McBratney and Moore 1985). Such indices have been used previously by 

Odeh et al. (1992) and Bragato (2004) where more detailed discussion is made about 

them. The MPE establishes the degree of fuzziness created by a specified number of 

classes for a defined 𝜑𝜑 value. The notion is that the smaller the MPE, the more 

suitable is the corresponding number of classes at the given 𝜑𝜑 value. The derivative 

of  𝐽𝐽𝑒𝑒(𝐂𝐂,𝐌𝐌) with respect to 𝜑𝜑 is used to simultaneously establish the optimal 𝜑𝜑 and 

cluster size. The optimal 𝜑𝜑 will maximise – (𝛿𝛿𝛿𝛿/𝛿𝛿𝛿𝛿)𝑐𝑐0.5 and the most suitable 

cluster size will produce the curve with the lowest maximum. In this study these 

indices are used as a general guide; once the range of possible combinations has been 

narrowed, I then intuitively decided on the most suitable cluster size and  𝜑𝜑 value on 

other non-clustering related criteria such as the number of observations within each 

cluster and the associated distribution of errors assigned to each cluster i.e. as close 

to being normally distributed as manageable.  

To determine model error I employed a leave-one-out-cross-validation (LOCV) 

procedure (Hastie et al. 2009). With this form of cross-validation, there were n=291 
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sets of computations. Using neural networks, a prediction is made for each 

successive calibration profile (at each depth increment) based on the learning rules of 

the remaining n-1 calibration profiles. Furthermore, with each computation, kriging 

was used to interpolate the residual at each depth increment based on the spatial 

auto-correlation of residuals of the n-1 calibration profiles. A final prediction 

resulted from the summation of the prediction and interpolated residual. Thus model 

error in this case was determined to be the difference between the observed value at a 

specific depth increment and its corresponding final prediction.  

To calculate the cluster PIs (𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑈𝑈) at each depth increment, I first 

arranged the observations into their respective clusters on the basis of their highest 

cluster membership grade. For a 95% PI, I took the upper 97.5% and lower 2.5% 

quantiles of each distribution for every cluster. In terms of handling the extragrade 

cluster error distributions, I follow the procedure of Tranter et al. (2010) whom 

suggested a penalisation calculation to extragrade areas where there is very low 

model prediction confidence. The PI for the extragrade class can be evaluated by: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝐿𝐿 =  2 × 𝑞𝑞2.5  

𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑈𝑈 =  2 × 𝑞𝑞97.5  

[3.3.1] 

where 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝐿𝐿  and 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑈𝑈  are the lower and upper PIs of the extragrade class, and q is 

the quantile value of the extragrade cluster error distribution at each depth increment.  

3.3.3.2. Uncertainty model validation  

Validation of the uncertainty model follows the description as detailed in section 

3.2.5. where 𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿and 𝑃𝑃𝑃𝑃𝑖𝑖𝑈𝑈  are formulated. The PICP is estimated accordingly for a 

95% PI based on the count of observed values that lie within the PI for each site at 

each depth. As such the PICP considers all observations (site and depth increments) 

as independent observations.  Thus the PICP is the proportion at all depths across all 

observations which lie within the 95% PI. To assess the sensitivity of the model by 

means of reducing the confidence limit sequentially, I constructed PIs for various 

confidence levels ranging from 5% to 99%. As for a 95% prediction level, by 

definition you would expect the PICP value to be close to the corresponding 

confidence or 100(1 − 𝛼𝛼)% level.         
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3.3.4. Mapping of predictions and their uncertainties 

Mapping of the predictions and associated prediction PIs follows precisely the steps 

as outlined in section 3.2.5. Along with generating maps of the predictions and their 

uncertainties (displayed as upper and lower prediction limits) at the standard depths I 

also demonstrate the functionality of the splines in a DSM framework which was 

also demonstrated in chapter 2. In this study I determine total predicted AWC and 

OC across the study area to a depth of 1m. These predictions are also accompanied 

by upper and lower prediction limits.  

3.3.5. Implementation of methods 

All statistical methods carried out in this study were performed with either R or 

Matlab- a computer programming language software. Matlab was used 

specifically for the neural networks and thus the LOCV procedures. FuzME 

(Minasny and McBratney 2002a) was used to perform fuzzy k-means with 

extragrades. All maps were generated using ESRI ArcGIS software.  

3.4. Results and Discussion 

3.4.1. The prediction model 

 3.4.1.1. Prediction model calibration 

For model calibration of OC, I found that a neural network model with 4 hidden 

nodes was appropriate in terms of predictive power without over-fitting the data. For 

AWC, 3 nodes was found to be the most appropriate model configuration. The 

coefficients of determination (R2) were reasonable at 54% for OC and 48% for 

AWC.  

3.4.1.2. Prediction model validation 

Generally predictions of OC were strongest at the surface and poorest at the bottom 

of the soil profile. As shown in Figure 3.4.1a-c, CCC ranged from 0.28 (RMSE=0.3) 

in the 0–10cm depth increment, to 0.11 (RMSE = 0.54) at 30–40cm through to -0.05 

(RMSE = 0.90) for the 80–100cm depth increment. 

 It was apparent that there was a low spatial auto-correlation between residuals at 

all 8 depth increments (data not shown), which was also observed in chapter 2. 

Nevertheless, adding the model prediction to the interpolated validation residuals 
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resulted in modest improvements to the prediction of OC. In Figure 3.4.1d-f, CCC 

increased to 0.38 and 0.14 at the 0–10cm and 30–40cm depth increments 

respectively, but no change was observed at 80–100cm. In each of the cases there 

was no improvement in the RMSE values.  



Chapter 3 – Empirical estimates of uncertainty for mapping continuous depth functions of soil 
attributes 
 

104 
 

 

Figure 3.4.1. Model validation of OC. Observed vs. fitted plots at 0–10cm, 30–40cm 
and 80–100cm before adding residuals (a-c) and after adding residuals (d-f). 
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For AWC, the validation results were also modest where predictions were 

strongest in the 80–100cm depth increment (CCC=0.1) (data not shown). In terms of 

all 8 depth increments CCC ranged between 0.04–0.10 (RMSE = 0.01–0.03). As for 

OC, there was not a well defined function for the spatial distribution of residuals. 

Additionally, any spatial auto-correlation that I was able to define was independent 

for each depth increment. Overall, adding the residuals to the predictions of AWC 

resulted in little to no improvement.  

The average CCC of the final validation predictions at the 8 depth increments for 

AWC and OC found in chapter 2 was 0.44 and 0.38 respectively. Essentially the 

validation results in this chapter are weaker. An explanation for this is that I did not 

perform independent multivariate analyses for both attributes to determine what the 

most correlated covariates were before construction of the neural networks. This is 

because, as discussed later, I performed the clustering process of the environmental 

covariates once only. Thus the defined clusters could be used simultaneously for both 

soil attributes. Given that the final predictions of both OC and AWC are modest in 

this chapter, future studies of this type will need to include an independent 

multivariate analysis prior to modelling. This would also mean that the clustering 

process would become independent for each predicted soil attribute and that the error 

determination through the leave-one-out-cross-validation would only include those 

environmental covariates that are significant for each soil attribute.    

3.4.2. The empirical uncertainty model 

3.4.2.1. Uncertainty model calibration: Fuzzy clustering and formulation of cluster 

prediction intervals. 

The optimal cluster size for the given environmental covariates using the FKM with 

extragrades algorithm was found to be 6, including the extragrade class. Clustering 

resulted in 61 observations belonging to cluster A, while 38, 43, 54 and 61 

observations belonged to cluster B, cluster C, cluster D, cluster E and the extragrade 

cluster respectively.  

Box plots of the empirical distribution are shown for AWC (Figure 3.4.2a-c) and 

OC (Figure 3.4.2d-f) at the depth increments of 0-10cm, 40-50cm, and 80-100. At all 

depth increments the distribution of model errors are different for each cluster. For 

both soil attributes there was a decreasing distribution of model errors with 
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increasing depth down the profile, which was proportional to the observed values at 

each depth increment. For example the proportion of the error and observed value 

(error/observed value) for OC and AWC regardless of cluster at 0-10cm and 80-

100cm were both found to be very close to 1. For AWC the distribution of model 

errors was largest for the extragrade cluster at all depth increments. This upholds the 

notion that reliability of the prediction in this part of the feature space is low in 

comparison to the other clusters. This relationship was mostly observed also for OC, 

but there were some exceptions (for example Figure 3.4.2d).  Applying the 

penalisation calculation for the extragrade class (Tranter et al. 2010) ensured that 

𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝐿𝐿  and 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑈𝑈  were larger than those of the other clusters at each depth increment.   
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Figure 3.4.2. Box plots of the empirical distributions of model error as derived from 
the empirical uncertainty model at the selected depths of 0–10cm, 40–50cm and 80–

100cm for AWC (a-c) and OC (d-f). 
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3.4.2.2. Uncertainty model validation  

The final prediction and corresponding upper and lower predictions at the 8 specified 

depth intervals were used as parameters to construct estimated splines. This process 

created 3 continuous profiles for each observation: a final prediction profile and 

lower and upper prediction limit profiles. I randomly selected 3 validation sites to 

illustrate how these splines compare to the measured values of OC and AWC at each 

of these sites. As can be seen in Figure 3.4.3, the dotted lines constitute the final 

prediction, while the solid lines equate to the lower and upper prediction limits, 

conferring the 95% PI. The bars represent the measured values of AWC (Figure 

3.4.3a-c) and OC (Figure 3.4.3d-f). As can be seen, a measured value fits within a PI 

if the right vertical side of the bar fits completely within the confines of the solid 

lines.  

Due to the proportionality of the observed values with the prediction errors, the 

PIs are mostly widest at the soil surface. Generally for AWC, the PI then narrows 

gradually from about 40cm to a roughly equally spaced interval to 1m. In the 

example of (Figure 3.4.3b), however, the interval is narrowest at 1 m. A similar trend 

is evident for OC (Figure 3.4.3d-f) where uncertainty is greatest towards the soil 

surface. Additionally for OC there are a couple of instances where the PI does not 

completely confine the measured value (e.g. Figure 3.4.3f). By deriving the relative 

proportion of the PI (range of the upper and lower prediction limits) and the 

corresponding prediction of all validation observations at each depth, it was found 

that the proportions slightly increased with depth. This indicates an increasing 

uncertainty with increasing soil depth, which was also the finding when validating 

the prediction model. For AWC again the PI was found generally to be proportional 

to the prediction at a given depth; however the predictions were more accurate at the 

sub-soil depth increments. This was also reflected when validating the prediction 

model for AWC, and counters that found in Chapter 2 which could be put down to 

the difference in covariates and modelling steps used between the two studies.  
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Figure 3.4.3. Profile plots of AWC (a-c) and OC (d-f) at randomly selected 
validation sites. Bars represent actual observed values. Dotted lines represent final 

DSM predictions. Solid lines represent upper and lower prediction limits. 
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Results of the PICP analysis indicate that at the desired confidence level of 95%, 

91 and 93% of all observations fitted with their given PIs for OC and AWC 

respectively, indicating with this type of validation, that the empirical uncertainty 

model is optimal for both soil attributes (Figure 3.4.4a-b) . Furthermore, with each 

successive decrease in the confidence levels a near corresponding decrease in the 

PICP is observed for both attributes indicating a required outcome in terms of 

sensitivity of the PI to changing confidence levels.    

 

Figure 3.4.4. Prediction interval coverage probability plots (PICPs) for OC (a) and 
AWC (b). 

3.4.3. Mapping of predictions and their uncertainties 

The maps in Figure 3.4.5 illustrate the spatial variability of the degree of membership 

each prediction node has to each class, based on the cluster centroids derived from 

the empirical uncertainty model procedure. This gives a good representation of 

which areas in the extent of the study area share a similarity based on the given suite 

of environmental covariates.  

Areas with a high degree of membership to the extragrade class (Figure 3.4.5a) 

appear to correspond to regions that are topographically diverse such as that to the 

east and south west where undulating slopes and hills are situated. These areas are 

also moderately to densely-populated by native forest. While sample sites exist 

across these landscapes in a predominantly equilateral triangular grid design 

(McGarry et al. 1989), it is likely that given the combination of a diverse landscape 

(rolling and undulating hills) and forest, these areas have not been sufficiently 

defined from the few sites that were taken in the area in terms of our clustering 
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procedure. Because I associate instances that have a high belongingness to the 

extragrade class as having a high prediction uncertainty, such areas could become the 

focus of future targeted sampling projects in order to generate new knowledge. In 

other instances, farm reservoirs (which if true should be eliminated from future 

analyses), as seen by symmetric shapes predominantly in the west of the study area, 

also have a high extragrade membership. 
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Figure 3.4.5. Spatial variation of the degree of membership each instance has to each 
cluster including the extragrade class. Extragrade (a), cluster A (b), cluster B (c), 

cluster C (d), cluster D (f), cluster E (g). 

Figure 3.4.6a-c shows the variability of OC across the study area at 3 selected 

model depth increments of 0–10cm, 30–40cm and 80–100cm. At each depth 

increment there is a lower prediction limit map (Figure 3.4.6a1-c1), the final 

predicted map (Figure 3.4.6a2-c2) and an upper prediction limit map (Figure 3.4.6a3-

c3). Similarly in Figure 3.4.7a-c, the spatial variability of AWC at the same depth 

increments as a lower (Figure 3.4.7a1-c1), final (Figure 3.4.7a2-c2), and upper 

prediction (Figure 3.4.7a3-c3).  

Based on the lower and upper prediction limits at 0–10cm across the study area, 

the average concentration of OC was predicted to range between 4–35 kg m3. The 

average predicted OC concentration at this depth was 18 kg m3. At 30–40 cm the 

predicted average OC was 10 kg m3. I am 95% confident that the true average of OC 
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at this depth is between 3–19 kg m3.  While at the 80–100cm depth increment, the 

predicted average of OC was 7 kg m3, and I am 95% confident that the true average 

is between 2–16 kg m3.  

For AWC at 0–10cm the average was predicted to be 0.16 m/m. With 95% 

confidence the true average is expected to be between 0.11–0.21 m/m at this depth. 

At the depth increments of 30–40cm and 80–100cm the average AWC was predicted 

to be 0.13 (0.08–0.16) m/m and 0.11 (0.08–0.14) m/m respectively.  
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Figure 3.4.6. Variability of OC at 0–10cm, 30–40cm and 80–100cm across the 
Edgeroi study area. Lower prediction limit (1), DSM final prediction (2), upper 

prediction limit (3). 
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Figure 3.4.7. Variability of AWC at 0–10cm, 30–40cm and 80–100cm across the 
Edgeroi study area. Lower prediction limit (1), DSM final prediction (2), upper 

prediction limit (3). 
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Total AWC and OC maps to 1m are shown in Figure 3.4.8a and Figure 3.4.8b 

respectively. Based on these maps I predict that the average total water (m2) to 1m is 

127 (88–158) mm. The total OC estimated across the extent of the study area is 

predicted to be 191 (50–385) Gg in the top 1m of soil.  
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Figure 3.4.8. Total water to 1m (a) and total OC to 1m (b) across the Edgeroi study 
area. Lower prediction limit (1), DSM final prediction (2), upper prediction limit (3). 
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3.5. Conclusions 

In this chapter a methodological framework was established for mapping 

uncertainties in the form of a PI for predicted soil attributes as they vary 

continuously with depth and space for a defined study area. This methodology 

complements the continuous prediction of soil attributes in a vertical and lateral 

space using splines and DSM methods.  The methodology for deriving PIs is 

independent of the prediction model, requiring only the model outputs and the 

measure of error associated with those predictions  

The best available quantitative measure of the deviation between the modelled 

output and the modelled real-world process is the residual or error. Therefore, the 

empirical uncertainty model explicitly accounts for all sources of uncertainty without 

the requirement to separate out the contribution of each error source to the overall 

uncertainty. I have demonstrated that this method performed well for both OC and 

AWC where for a given confidence level, a near matching proportion of validation 

observations were within the confines of the PI. While an encouraging result, I 

accept that this methodology represents a pragmatic approach to estimating 

uncertainties both spatially and laterally in a DSM framework. It is likely their 

estimation may be a lot more complex than that formulated in this study. Future 

research will obviously need to investigate the extent of this perceived complexity 

and the scope of future research would initially involve comparison of the empirical 

approach I have presented with other approaches such as Monte Carlo simulations to 

construct PIs. During such a comparative exercise, one would then also need to 

consider, in addition to the assessing the accuracy of the estimated uncertainties, the 

time and costs for implementing such alternative approaches.   

In the course of this work however, a number of issues were presented that need 

to be addressed in order for improvements to be made to this approach. First, it 

begins with an independent model prediction framework where prior to modelling, a 

multivariate analysis should be performed to determine what the most closely 

correlated environmental covariates are for each soil attribute.  This will ideally 

address some of the issues regarding the performance of the prediction models. 

Having a stronger prediction will naturally transfer to a reduced error. Ultimately, the 

distribution of errors for each class will be narrower, resulting in PIs that display 

more precision than that which I have just presented. By having an independent 



Chapter 3 – Empirical estimates of uncertainty for mapping continuous depth functions of soil 
attributes 

 
  

119 
 

modelling process also means the requirement of an independent LOCV and 

clustering process. This inevitably generates more work. However, while better 

prediction outcomes are expected, the empirical uncertainty method is neither 

computationally demanding nor difficult to implement.  

Beyond such pertinent modifications, future work could determine how well the 

methodology handles both different calibration sample sizes and other soil property 

data. Chapter 4 investigates an independent sampling design for determining soil 

map quality which validates the mapped predictions and the quantifications of the 

uncertainties. On the idea of sampling, it would be ideal to investigate whether 

sampling in areas that have a high membership to the extragrade class would 

facilitate narrowing the uncertainty where the uncertainty is believed to be greatest. 

Methods for determining the optimal class size will also need to be investigated.  
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See what the land is like and whether the people who live there are strong or weak, 

few or many. What kind of land do they live in? Is it good or bad? What kind of 

towns do they live in? Are they unwalled or fortified? How is the soil? Is it fertile or 

poor? Are there trees in it or not? Do your best to bring back some of the fruit of the 

land.  

[Numbers 13:18–20 (NIV)] 

  



 

126 
 

 

 

  



 Chapter 4 - Criteria and sampling for simultaneously measuring the quality of predictions and their 
uncertainties in a digital soil mapping framework  

  

127 
 

 

Chapter 4 

Criteria and sampling for simultaneously measuring the quality of 

predictions and their uncertainties in a digital soil mapping 

framework 

Summary 

In this chapter two new criteria are introduced to assess the quality of digital soil 

property maps. Soil map quality is estimated on the basis of validating both the 

accuracy of the predictions and their uncertainties (which are expressed as a 

prediction interval). The first criterion is an accuracy measure that is different in 

form to the usual Mean Square Error (MSE) because it accounts also for the 

prediction uncertainties. This measure is the spatial average of the statistical 

expectation of the Mean Square Error of a simulated random value (MSES). The 

second criterion addresses the quality of the uncertainties which is estimated as the 

total proportion of the study area where the (1-α)-prediction interval (PI) covers the 

true value. Ideally, this areal proportion equals the nominal value (1- α), here 95%. 

In the Lower Hunter Valley, NSW, Australia, I used both criteria to validate a soil 

pH map using additional units collected from a probability sample at five depth 

intervals: 0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm, 60–100 cm. For the first depth 

interval (0-5 cm) in 96% of the area, the 95% PI of pH covered the true value. The 

Root Mean Squared Simulation Error (RMSES) at this depth was 1.0 pH units. 

Generally, the discrepancy between the expected value and the actual areal 

proportion in addition to the RMSES, increased with soil depth, indicating a growing 

imprecision of the map and underestimation of the uncertainty with increasing soil 

depth. In exploring this result, conventional map quality indicators emphasised a 

combination of bias and imprecision particularly with increasing soil depth. There is 

great value in coupling conventional map quality indicators with those which I 

propose in this chapter as they target the decision making process for improving the 

precision of maps and their uncertainties. For the study area I discuss options for 

improving upon these results in addition to determining the possibility of extending a 
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similar sampling approach for which multiple soil property maps can be validated 

concurrently.  
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4.1. Introduction 

Quantifying soil map quality has been an area of sustained research for well over 

forty years, with seminal papers dating back to the 1960s and 70s e.g. Webster and 

Beckett (1968) and Burrough et al. (1971). Brus et al. (2011) demonstrate not only 

the continual development of methodologies for validating soil maps but also the 

importance of quantifying soil map accuracy. Grunwald (2009) however, points out 

that while digital soil mapping (DSM) has become popularised in recent times, it is 

frequently the case that maps are not validated.   

Generally, soil map quality has been related to measures of accuracy (Finke 

2007). These are conventionally based on measures of variance between observed 

and predicted values (Bishop et al. 2001). For soil property mapping, this is 

quantified by the goodness of fit (R2) or the mean of the squared prediction error 

(MSE).  For assessing the quality of categorical soil maps, measures based on 

mapping unit purity and user’s and producer’s accuracies are the most common 

(Congalton and Green 2009; Lark 1995).  While useful, these measures are limited 

because it is possible only to estimate the accuracy of the predictions. While a 

number of tools are available that allow one to express or quantify the level of 

uncertainty in soil functions generated from uncertain predictions of basic soil 

properties (Minasny and McBratney 2002; Brown and Heuvelink 2005), rarely do we 

consider the quality or appropriateness of them in a practical sense. For example, 

given a level of uncertainty regarding a prediction of a soil attribute across a spatial 

extent, what implications does this have in how we interpret soil phenomena or 

manage the soil resource in question? Is it possible to optimise inputs such as lime 

for soil pH management given a prescribed level of uncertainty? It is apparent 

therefore that there needs to be additional measures of map quality to those 

conventionally reported which also take into account the quality of the estimates of 

prediction uncertainty for a particular soil attribute. By incorporating this additional 

information, we are able to consolidate our limited understanding of soil variability 

with reciprocal measures of soil map quality.  

A useful and empirical approach to estimating the uncertainty of model outputs 

was proposed by Shrestha and Solomatine (2006) where uncertainty was expressed 

in the form of two quantiles (constituting a prediction interval) of the underlying 

distribution of prediction  errors (residuals).  The prediction interval (PI) explicitly 
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takes into account all sources of uncertainty and circumvents attempts to separate out 

the contribution of each source (Shrestha and Solomatine 2006; Solomatine and 

Shrestha, 2009).  In Chapter 3 the empirical uncertainty approach of Shrestha and 

Solomatine (2006) was adapted within a DSM framework to map PIs across a study 

area. To that end, the soil map quality criteria I propose in this study are largely 

based on the empirical coverage of PIs.  

In terms of quality measures for validating soil maps, Brus et al.  (2011)  provide 

a comprehensive review of those used for both categorical and quantitative digital 

soil maps. Map validation by probability sampling involves the random selection of 

additional test units (observations at locations not used for model calibration) from a 

study area. In probability sampling all units within a study area have a positive 

probability of being selected; where the probabilities are determined by the sampling 

design and can be derived from this design (de Gruijter et al. 2006). Brus et al. 

(2011) concluded that probability sampling is the more superior validation method 

(in comparison to random holdback or cross-validation) because unbiased estimates 

of the measures of soil map quality can be obtained by ‘design-based’ inference and 

thus are free of model assumptions (Brus and de Gruijter 1997). This is generally not 

the case for random holdback or cross-validation (Brus et al. 2011). However from 

the point of practicability it is necessary to weigh up whether a more statistically 

valid estimate of map quality is worth the time, cost and effort to perform 

independent probability sampling.  

Chapter 3 demonstrates a procedure for validation of digital soil maps (predictions 

and uncertainties) using a randomly held-back sample. In this chapter validation is 

performed on the basis of a probability sample to collect additional sampling units 

from the study area. Subsequently, the aim of this research therefore is to present and 

illustrate two new criteria (in addition to those conventionally reported) for 

evaluating both the quality of predictions and the quality of quantifications of the 

uncertainty in a DSM on the basis of ‘design-based’ inference.   

4.2. Soil map to be validated 

4.2.1. Study Area 

The area selected for this study is an approximately 220 km2 area north of the town 

of Cessnock (32.83°S 151.35°E) in the Lower Hunter Valley, approximately 140 km 



 Chapter 4 - Criteria and sampling for simultaneously measuring the quality of predictions and their 
uncertainties in a digital soil mapping framework  

  

131 
 

north of Sydney, NSW, Australia (Figure 4.2.1). Topographically, this area consists 

mostly of undulating hills that ascend to low mountains to the south-west. This area 

is part of the Sydney Basin where parent materials are composed mostly of Mesozoic 

sandstones and shales (Thackway and Cresswell 1995). The dominant soil types 

according to the Australian Soil Classification (Isbell 2002) are Red and Brown 

Dermosols and, on topographic rises, Red Calcarosols (Odgers et al.  2011). In terms 

of landuse, dryland agricultural grazing systems are predominant, followed by an 

expansive viticultural industry. While most of the land has been dedicated for these 

uses, tracts of remnant natural vegetation (dry forest) are apparent, particularly 

towards the south-western (Broken Back Range), eastern (Werakata National Park) 

and northern margins of the study area. See Bell (2004) for further details of the 

environmental setting of this area.  

For this study I chose soil pH as the target variable. The reason for this selection 

was because viticulture is a widespread industry across the study area and many 

management decisions are centred on the nutrient status of the high value wine grape 

crops, which is generally determined by soil pH (White 2003). Soil nutritional status 

affects all parts of the grape vine, from root growth and distribution through to shoot 

growth and grape composition.  

The soil dataset I used contains 994 sites where pH was recorded at each horizon 

and/or at specific depths to at least 1m. Three hundred of the soil samples were 

collected in 2004 using the Conditioned Latin Hypercube sampling method (Minasny 

and McBratney 2006) where compound topographic index, parent material and 

Normalised Difference Vegetation Index were used as auxiliary variables to provide 

environmental information. The remaining 694 samples were collected sporadically 

between 2001 and 2009 mainly using a kth-order random toposequence sampling 

design (Odgers et al. 2008).  
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Figure 4.2.1. Lower Hunter Valley study area with respect to location in New South 
Wales (large box) and Australia (small box). 

4.2.2. Digital soil mapping of the predictions 

A soil map depicting the lateral and vertical distribution of soil pH across the study 

area was generated following the procedure of Chapter 2 which uses an amalgam of 

soil depth spline functions and DSM techniques (Figure 4.2.2b) (only 0-10 cm 

shown).   The spatial entity of the map is point support where point estimates were 

made on a 25m regular grid. The vertical resolution at each grid node is 1cm.  

This map was generated using a regression kriging approach where the 

predictions were based on the calibration dataset of 994 soil profile descriptions 

distributed across the area (Odgers et al. 2011). To standardise prediction depths, 

mass preserving splines were fitted individually to each profile before mean 

estimates of pH were taken at 0-10 cm, 10-20 cm, 20-30 cm, 30-40 cm, 40-50 cm, 
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50-70 cm, 70-80 cm, 80-100 cm. The deterministic component (of regression 

kriging) used a neural network where the target variables were the mean observations 

at each of the standardised depths. These were modelled against a suite of 

environmental covariates derived from 25m rasters of a digital elevation model 

(DEM) and various derived terrain attributes; Landsat 7 ETM+ band data and various 

band derivatives. The model formulae derived from this procedure were then applied 

across the extent of the study area, where covariate information existed only.  

For the stochastic component, model residuals were independently mapped for 

each standardised depth with kriging using localised variograms (exponential 

function) of the 100 nearest neighbours to a prediction point. Both the deterministic 

and stochastic components were summed to arrive at a final prediction for each 

standard depth at each point.  

  



Chapter 4 - Criteria and sampling for simultaneously measuring the quality of predictions and their 
uncertainties in a digital soil mapping framework  
 

134 
 

 

 

Figure 4.2.2. Soil pH map to be validated (displaying only the 0-10 cm interval). 
Soil map depicts the (b) digital soil mapping prediction and the (a) upper and (c) 

lower prediction limits which constitute a prediction interval. 

4.2.3. Digital soil mapping of the uncertainties 

The method described for quantifying the uncertainties for DSM in Chapter 3 was 

also applied in this study. This method is an adaption of the ‘‘uncertainty estimation 

based on local errors and clustering’’ (UNEEC) method, described by (Solomatine 

and Shrestha 2009). The purpose of the UNEEC is to derive the upper and lower 

prediction limits based on the model error, and since it is estimated through an 

empirical distribution, it is not necessary to make any assumption about residuals 

(Solomatine and Shrestha 2006).  

Using the calibration data, the adaption of the UNEEC for DSM first uses fuzzy 

k-means with extragrades to partition the environmental covariate data into clusters 

which share similar environmental attributes (McBratney and de Gruijter 1992). 

Each observation in the dataset is then given a grade of membership to all clusters 

including the extragrade cluster.  

Next, model output error is determined. The regression kriging approach similar 

to that used for the DSM prediction procedure was used except final predictions were 

evaluated by leave-one-out-cross-validation (Hastie et al. 2009). The only output 

required here is the residual between the observed value of the target variable and the 

corresponding final prediction at each calibration point.  

Once the clusters and model output error have been identified, the PIs for each 

cluster are computed from the empirical distributions of the corresponding residuals. 
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Therefore, one underlying assumption of the empirical uncertainty method is that 

particular areas (clusters) within a landscape will have similar residuals or 

distribution of residuals and ultimately share a similar range of uncertainty. To 

construct a cluster 95% PI, first I assign each calibration point to the cluster it has the 

highest membership to. Then for each cluster, the 2.5 and 97.5 percentile values are 

taken from the empirical distribution of residuals for the lower and upper prediction 

limits respectively. Those points that belong to the extragrade cluster are handled 

differently in that I impose a penalisation by way of a multiplier, as proposed by 

Tranter et al. (2010): 

𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝐿𝐿 =  2 × 𝑞𝑞2.5  

𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑈𝑈 =  2 × 𝑞𝑞97.5  

 [4.2.1] 

where 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝐿𝐿  and 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑈𝑈  are the lower and upper prediction limits of the extragrade 

class, and q is the quantile value of the extragrade cluster error distribution at each 

depth increment.  

Computing the PI for each prediction node across the study area first requires 

each node to be assigned membership grades to each of the clusters characterised in 

the calibration procedure. These are determined on the basis of the environmental 

covariates at each node and the pre-determined cluster centroids. From this, I 

determine the prediction node PI using the weighted mean of the PI of each cluster 

(Shrestha and Solomatine 2006). This can be defined mathematically as: 

𝑃𝑃𝑃𝑃𝑗𝑗𝐿𝐿 =  ∑ 𝑚𝑚𝑖𝑖𝑖𝑖
𝑐𝑐
𝑖𝑖=1 𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗𝐿𝐿  

𝑃𝑃𝑃𝑃𝑗𝑗𝑈𝑈 =  ∑ 𝑚𝑚𝑖𝑖𝑖𝑖
𝑐𝑐
𝑖𝑖=1 𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗U   

[4.2.2] 

where 𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿and  𝑃𝑃𝑃𝑃𝑖𝑖𝑈𝑈  correspond to the weighted lower and upper PI for the ith 

prediction node,  𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗𝐿𝐿 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗𝑈𝑈  are the lower and upper PIs for each cluster j 

(including extragrade cluster) as determined from the calibration sites, and 𝑚𝑚𝑖𝑖𝑖𝑖  is the 

membership grade of ith prediction node to cluster j. Finally, the lower and upper 

prediction limits (𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿and 𝑃𝑃𝑃𝑃𝑖𝑖𝑈𝑈  respectively) are then derived for each prediction node 

by adding the prediction (from the DSM procedure) to 𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿and 𝑃𝑃𝑃𝑃𝑖𝑖𝑈𝑈 .  
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All the steps after the clustering process are repeated for each of the standardised 

depths. Figure 4.2.2a and Figure 4.2.2b show the lower and upper prediction limits of 

pH across the study area for the 0-10cm depth increment. Mass preserving splines 

are also used to construct continuous representations of the upper and lower 

prediction limits of pH by using the estimated 𝑃𝑃𝑃𝑃𝑖𝑖𝑈𝑈and 𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿values at each depth 

respectively as parameters.  

4.3. Material and Methods 

4.3.1. Concepts of Soil Map Quality 

In this study I use a design-based approach to derive external accuracy estimates of 

soil map quality in terms of both the predictions and their uncertainties. This 

involves the use of additional data collected from a probability sample for which the 

specifics will be discussed later in more detail. Using such a design-based approach 

means that our estimates of map quality are model-free and un-biased (de Gruijter et 

al. 2006; Brus et al. 2011). 

For this study, the mapped predictions and their uncertainties are on point support. 

This means that the additional independent sampling units should also have point-

support. As the first criteria of our proposed soil map quality indicators I use a 

measure which assesses the accuracy of predictions (but also taking into account the 

uncertainties). As discussed previously, the usual measure for the accuracy of 

quantitative map predictions is the mean squared prediction error (MSE) which is 

defined as: 

𝑀𝑀𝑀𝑀𝑀𝑀 =  1
‖𝐴𝐴‖ ∫ �𝑧𝑧𝑝𝑝(𝑠𝑠) −  𝑧𝑧(𝑠𝑠)�

2
d𝑠𝑠𝑠𝑠∈𝐴𝐴      

[4.3.1]  

where A is the mapped area and 𝑧𝑧𝑝𝑝(𝑠𝑠) and 𝑧𝑧(𝑠𝑠) are the predicted and true values at 

location s of the target variable, here pH.  Additionally bias, expressed as the Mean 

Error (ME) can then also be derived, which has the general formula: 

𝑀𝑀𝑀𝑀 =  
1
‖𝐴𝐴‖

��𝑧𝑧𝑝𝑝(𝑠𝑠) −  𝑧𝑧(𝑠𝑠)�d𝑠𝑠
𝑠𝑠∈𝐴𝐴

 

[4.3.2]  
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These conventional measures quantify only the error and bias of the predictions, it 

does not account for the uncertainty of the local predictions. To this end I introduce 

the ‘Mean Squared Error of Simulation’ (MSES). The underlying idea can be simply 

explained by imagining that a value is simulated randomly at a given location, using 

the local prediction and the local prediction variance given by the map as parameters 

of a local error distribution. The measure that I propose is the spatial average of the 

statistical expectation of the mean squared error of a simulated random value: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
‖𝐴𝐴‖

� 𝐸𝐸𝑠𝑠{𝑧𝑧𝑠𝑠(𝑠𝑠) −  𝑧𝑧(𝑠𝑠)}2d𝑠𝑠
𝑠𝑠∈𝐴𝐴

 

[4.3.3] 

where 𝑧𝑧𝑠𝑠(𝑠𝑠) and 𝑧𝑧(𝑠𝑠) are the simulated and true values, respectively, at location 𝑠𝑠 

and Es is the statistical expectation over the error distribution. For estimation of the 

MSES, it is equated as the summation of two components; a spatially averaged 

(squared) local bias component, identical to the MSE and a spatially averaged local 

precision component: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
‖𝐴𝐴‖

� 𝐸𝐸𝑠𝑠�𝑧𝑧𝑝𝑝(𝑠𝑠) −  𝑧𝑧(𝑠𝑠)�
2

d𝑠𝑠
𝑠𝑠∈𝐴𝐴

+
1
‖𝐴𝐴‖

� 𝐸𝐸𝑠𝑠�𝑧𝑧𝑝𝑝(𝑠𝑠) −  𝑧𝑧𝑠𝑠(𝑠𝑠)�
2

d𝑠𝑠
𝑠𝑠∈𝐴𝐴

 

= 𝑀𝑀𝑀𝑀𝑀𝑀 +
1
‖𝐴𝐴‖

� 𝜎𝜎2(𝑠𝑠)d𝑠𝑠
𝑠𝑠∈𝐴𝐴

 

= 𝑀𝑀𝑀𝑀𝑀𝑀 + 𝜎𝜎2��� 

[4.3.4] 

where 𝜎𝜎2(𝑠𝑠) is the variance of the prediction error as given by the map at location s. 

Note that the second component can be simply obtained by averaging the of 𝜎𝜎2 over 

the entire map grid. An estimate of MSES can therefore be obtained by estimating 

MSE from the sample data, and adding 𝜎𝜎2��� to it: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀� = 𝑀𝑀𝑀𝑀𝑀𝑀� + 𝜎𝜎2��� 

[4.3.5]  

The second criterion is expressed as the areal proportion of the mapped area 

where the measured value at a specified depth interval fits within the bounds of its 
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estimated (1-α) % PI (the PI covers the measured value), shortly referred to hereafter 

as the areal proportion correctly predicted (APCP): 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
1
‖𝐴𝐴‖

� 𝑖𝑖(𝑠𝑠)d𝑠𝑠
𝑠𝑠∈𝐴𝐴

 

[4.3.6] 

where 𝑖𝑖(𝑠𝑠) equals 1 if the true pH value at location 𝑠𝑠 is covered by the PI given by 

the map at 𝑠𝑠, and 0 otherwise.  

Conceptually, both criteria form an agreeable pair and ideally should be reported 

together. The first explicitly deals with the accuracy of the simulations, while the 

second signals either an under- or over- coverage (PIs too narrow or too wide) for a 

given confidence level. As a case in point and the necessity for reporting on both 

criteria; it is possible to have an inaccurate map (wide prediction intervals) with the 

same coverage proportion (APCP) as an accurate map. Alone, the second criterion 

can not tell the difference between the two. Therefore coupling the APCP with the 

MSES allows penalisation to be given where predictions are found to be inaccurate.  

 

4.3.2. Probability Sampling Design 

A stratified simple random sampling design (STSI) (de Gruijter et al. 2006) was used 

to select the sampling locations at which soil pH was to be laboratory analysed at 

specified depth increments. This design was chosen over a simple random sample 

(SI) design on the basis that greater efficiency can be expected in terms of smaller 

sampling variance of the estimated map quality measures from the same number of 

samples (Brus et al., 2011). I used two stratification variables: the depth-averaged 

whole-profile prediction of pH and an uncertainty measure; the depth-averaged 

whole-profile difference between the upper and lower prediction limits. The 

averaged prediction and the uncertainty measure for each mapped point location 

were plotted on a graph from which four equal-area strata were generated empirically 

by shifting the threshold values of each stratification variable (Figure 4.3.1a). The 

total number of prediction nodes equalled 353 316 making the size of each stratum 

88 329 nodes. The characteristics or threshold values for each stratum are 

summarised in Table 4.3.1. Figure 4.3.1b shows the spatial extent of the strata across 

the study area where it is worth noting that the strata do not form contiguous areas. 
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From knowledge of the soil landscape across the study area, the strata which have the 

highest uncertainty (C and D; widest PIs) appear to cover areas of mountainous 

terrain or rugged terrain relative to other areas. A low density of prediction sites 

coupled with complex terrain and for the most part inaccessible, it is quite logical 

that uncertainty is high in these landscape settings. Conversely, the strata that have a 

lower uncertainty (A and B) exist predominantly where the relief is less complex, the 

land has been cleared and where most agricultural pursuits are concentrated in the 

areas such as grazing and viticultural production. For example, stratum B, is a good 

indicator of where viticulture is practiced as the soils are a little higher on the 

landscape and are generally characterised by higher pH levels.  

Table 4.3.1 Threshold values determined empirically of the stratification variables:- 
depth-averaged whole-profile prediction of pH and depth-averaged whole-profile 

difference between the upper and lower prediction limits for each stratum. 

Stratum pH prediction Uncertainty (95% PI) 

A Low (≤ 5.9) Narrow (≤ 2.6) 

B High (>5.9) Narrow (≤ 2.6) 

C Low (≤ 5.9) Wide (>2.6) 

D High (>5.9) Wide (>2.6) 
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Figure 4.3.1. Determination of sampling strata and their subsequent spatial extent. 
(a) Plot illustrating the process for constructing equal-area strata where the 

stratification variables were the depth-averaged whole-profile pH prediction and 
depth-averaged whole-profile difference between upper and lower prediction limits. 

Black lines indicate the threshold values for demarcation of each stratum A, B, C and 
D. (b) Spatial coverage of the equal-area strata across the study area. 

A total of 100 sampling units (SUs) were used to validate the map in this study. 

These were allocated proportionally to the strata, so that from each stratum 25 nodes 

were selected fully randomly from the potential 88329 nodes. A handheld Global 

Positioning Satellite (GPS) receiver was used to locate the positions of the SUs 

within the field. The SUs were soil cores of between 100-120 cm in length and a 

diameter of 5 cm. These were taken using a hydraulic geoprobe soil corer mounted 

on the back of a truck/all terrain vehicle (ATV).  

In the laboratory, each SU was sub-sampled corresponding to the depth intervals 

of: 0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm, 60–100 cm. Once mixed, a small aliquot 

from each depth interval was analysed using the 1:5 soil:water suspension method to 

determine soil pH (Rayment and Higginson, 1992). Randomly selected, duplicate 

aliquots totalling 50 were also analysed in order to estimate measurement error for 

reasons described further on.   
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4.3.3. Design-based Estimation of Soil Map Quality 

The statistical inference for estimating the areal proportions and the standard errors 

of point locations which fit within their PI is given in de Gruijter et al. (2006). The 

indicator value for each SU at each depth was evaluated by: 

• First, the  𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿and 𝑃𝑃𝑃𝑃𝑖𝑖𝑈𝑈estimates corresponding to each of the 8 prediction depths 

were used as the spline parameters for the construction of continuous 

representations of the prediction limits;  

• The continuous 𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿and 𝑃𝑃𝑃𝑃𝑖𝑖𝑈𝑈estimates were then queried to derive the mean of the 

prediction limits for each of the 5 sampling depths at the validation points;  

• Analysis was performed to determine whether the observed pH value fitted within 

its corresponding PI.  Indicator values of either a one (1) indicating a fit within the 

bounds of the PI, or zero (0), indicating a non-fit not fit within the bounds of the 

PI. 

From Equation 4.3.6 the design-based estimator for APCP in this study is: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� =  
1
‖𝐴𝐴‖

�
‖𝐴𝐴ℎ‖
𝑛𝑛ℎ

𝐻𝐻

ℎ=1

�𝐼𝐼ℎ𝑗𝑗

𝑛𝑛ℎ

𝑗𝑗=1

 

[4.3.7] 

where ‖𝐴𝐴ℎ‖ and 𝑛𝑛ℎ  are the surface area and sample size (number of selected 

validation points, here 25) of stratum h, respectively, and 𝐼𝐼ℎ𝑗𝑗  is the indicator value as 

determined at the j-th sample point of stratum h. The reason why I use 𝐼𝐼ℎ𝑗𝑗  instead of 

ihj is because I do not possess true values of pH and thus need to work from the 

measured pH values, meaning that the indicator values are thus subject to random 

error. The measurements that are used for validation may be accurate enough that 

one can safely assume that the effects of measurement error on the validation results 

are negligible. However, that assumption cannot be made in this study; therefore we 

need to consider the effects of measurement error. Contained within Appendix 4.1 is 

an explanation of accounting for measurement error in map validation. Also in 

Appendix 4.1 are the detailed calculations for estimation of the error variance of 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�  due to both the sampling and measurement errors.    

For estimation of the MSES, Equation 4.3.5 is followed. As only 𝑀𝑀𝑀𝑀𝑀𝑀�  is subject 

to sampling error, the sampling variance and standard error of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀�  equal those of 

𝑀𝑀𝑀𝑀𝑀𝑀� . Finally, an estimate at the scale of the mapped variable, the root mean squared 
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error of simulation (RMSES), is obtained by taking the square root of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀� . 

Similarly for the limits of a confidence interval.       

The methodology for estimation of the APCP is evaluated on the basis of a 95% 

PI. One way to assess both the performance and sensitivity of the PIs is to estimate 

the APCP using a range of confidence levels (besides 95%). Variants of this type of 

validation, termed the prediction interval coverage probability (PICP) have 

previously been shown to be an important validation criterion in other studies e.g. 

Shrestha and Solomatine (2006) and Tranter et al. (2010). Akin to the estimation of a 

95% PI, I performed the same procedures previously described to construct PIs with 

confidence levels ranging from 5%–90% and 99%. For each confidence level, 

estimation of the APCP was derived in the same way as described for a 95% 

confidence level. The PICP is a valuable indicator of the validity of the uncertainty 

model where it is said to be optimal when the PICP value is close to the range of 

corresponding 100(1 − 𝛼𝛼)% confidence levels.   

4.3.4. Conventional Measures of Map Quality 

For conventional measures of map quality, I compared the predicted values of pH at 

each depth for each SU with the corresponding observed value. The method (using 

mass-preserving splines) for evaluating the prediction at each sampling depth was the 

same as for deriving the lower and upper prediction limits.  

I derived spatial estimates of accuracy, bias and imprecision at each depth 

interval, where accuracy is stated in terms of the Root Mean Squared Error (RMSE) 

which is estimated by taking the square root of the predicted MSE (Equation 4.3.1). 

As I cannot assume that the measurements used for validation are free of the effects 

of measurement errors, it is necessary to make allowances for them within the 

calculation. Appendix 4.1 provides unbiased estimates for the MSE and variance of 

MSE in the presence of measurement errors. Confidence limits for the RMSE can be 

calculated as the square roots of the confidence limits for MSE, whereby 𝑀𝑀𝑀𝑀𝑀𝑀 � is 

assumed normally distributed. For calculating the variance of the ME (bias) there is 

no need to correct for measurement error, because no non-linear transformation is 

involved which means it is automatically accounted for in the standard estimation of 

the variance.  

Imprecision was simply calculated as the square root of the difference between 

the 𝑀𝑀𝑀𝑀𝑀𝑀 �  and the squared 𝑀𝑀𝑀𝑀 � defined as: 
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𝐼𝐼𝐼𝐼𝐼𝐼 = �𝑀𝑀𝑀𝑀𝑀𝑀 � −�𝑀𝑀𝑀𝑀 � �
2
 

[4.3.8]  

4.3.5. Implementation of methods 

See section 3.3.5 for details of softwares used in this study. 

4.4. Results and Discussion 

As a preamble to interpreting the output of the proposed map quality criteria, there 

are four general outcomes to consider. The first is that the APCP is equal to or very 

near (above or below) the nominal confidence level and the RMSES is small. For this 

result the predictions and simulations are accurate but more importantly, what 

uncertainty there is, is adequately accounted for and covered by the PI. This result is 

ideal, however the map user will need to consider the level of uncertainty they are 

willing to accept for the given purpose of the map. In the case of this study, the 

purpose may be the optimisation of liming where viticulture is practiced. 

Nevertheless, given that the accuracy is quite high for this first outcome, logic will 

generally indicate that the uncertainties will also be quite low (narrow prediction 

intervals). The second outcome is the situation where the APCP is as the first but the 

RMSES is large. In this result the mapped predictions are inaccurate, but the PIs 

manage to account for most if not all the known sources of uncertainty. This is not an 

ideal result, because ultimately the map user wants an accurate map and the PIs could 

be considered to be too wide, thus making precise management decisions difficult, 

for example, the optimisation of lime inputs. It should be avoided, however, to 

interpret a map as being either high or low quality without consideration of the 

intended purpose of the map. Nevertheless, this second result is more ideal than the 

third whereby the difference between the APCP and the nominal confidence level is 

large, and the RMSES is high. This result indicates an inaccurate map in addition to 

the presence of other sources of uncertainty that were not accounted for and/or bias. 

The fourth outcome is where the RMSES is small but the APCP is far from the 

nominal confidence level. Given the occurrence of any one of the four outcomes, it 

then becomes necessary to investigate reasons why for example the RMSES is large 

but the APCP is ideal (second outcome) etc. It is therefore worth stressing at this 
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point that conventional map quality indicators should also be used as a companion to 

our proposed criteria because they address explicitly issues of bias and imprecision.  

In terms of the results from this study, the PI was computed for a 95% confidence 

level. With this basis, the ideal APCP for any of the specified depth intervals should 

be 95%. Taking into account the standard errors of the estimated areal proportions, 

this condition was met at the 0–5 cm and 5-15 cm depth intervals where proportions 

of 96 ± 4% and 88 ± 7% were estimated, respectively (Table 4.4.1). This means that 

at least to 15 cm, I am 95% confident the true value of pH falls within the specified 

PI at each prediction node. The RMSES at these depths was found to be 1.0± 0.1 

units of pH, indicating that there may be some issues of accuracy. However, relative 

to the RMSES values from 30 cm, the predictions towards the soil surface are more 

accurate. This issue of inaccuracy is corroborated with the conventional map quality 

indicators where it can be seen just at the first two depth increments that there is 

evidently some positive bias (indicating systematic under prediction) within the 

predictions. More detail of the conventional indicators is discussed further on.    

Table 4.4.1. Results of the proposed soil map quality indicators: The areal proportion 
of the map within the specified prediction interval or correctly predicted (APCP) and 

Root mean square error of simulation (RMSES) at each depth increment. 
Additionally, corresponding measures of accuracy (RMSE), bias (ME) and 

imprecision (IMP) of the given map taking into account only the quality of the 
predictions. 

Depth (cm) APCP RMSES RMSE ME IMP 

0-5 96 ± 5% 1.0± 0.1 0.6± 0.1 0.2± 0.1 0.6 

5-15 88 ± 7% 1.0± 0.1 0.7± 0.1 0.3± 0.1 0.6 

15-30 81 ± 8% 1.0± 0.1 0.8± 0.1 0.2± 0.1 0.7 

30-60 74 ± 9% 1.3 ± 0.1 1.0± 0.1 0.1± 0.1 1.0 

60-100 81 ± 8% 1.6 ± 0.1 1.1± 0.1 0.0± 0.1 1.1 

With increasing depth down the profile an underestimation of the uncertainty is 

observed. For example, at 15-30 cm the APCP indicates that on average 81± 8% of 

map nodes have PIs that cover the true value of pH at that depth interval. At 30-60 

cm the APCP decreased to 74± 9%, then increased marginally at the 60-100 cm 

depth interval (81± 8%). At these three depth increments the RMSES increased from 

1± 0.1, to 1.3± 0.1 and finally 1.6± 0.1, respectively. Taken as a whole, the picture 
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that is quite evident is that with increasing soil depth, the accuracy of the predictions 

decreases along with a growing level of uncertainty that is not accounted for.  

Observed vs. fitted plots provide a visual guide of the deviation of the predicted 

values of pH from the co-located measured values at each depth interval (Figure 

4.4.1). Lin’s concordance correlation coefficient (CCC) was used to derive a 

quantitative measure of the relationship between the predicted and observed 

measurements (as described in Chapter 2- 2.2.5.) The plots (Figure 4.4.1) show a 

moderate agreement between the observed and fitted values where CCC ranged 

between 0.44 and 0.30, with the strongest predictions at 0–5 cm (Figure 4.4.1a).  

Similarly the accuracy at 0–5 cm was 0.6± 0.1 and gradually decreased with depth to 

0.7± 0.1 (5–15 cm), 0.8± 0.1 (15–30 cm), 1.0± 0.1 (30–60 cm) and 1.1± 0.1 (60–100 

cm). 

 

Figure 4.4.1. Plots of the observed soil pH vs. the corresponding digital soil mapped 
prediction of soil pH and resultant Lin’s Concordance Correlation Coefficient at (a) 

0-5 cm, (b) 5-15 cm, (c) 15-30 cm, (d) 30-60 cm, and (e) 60-100 cm. 

What can also be observed from the plots is that at higher pHs (>7) there is a 

systematic under prediction, particular at 15–30 cm, 30–60 cm and 60–100 cm 

(Figure 4.4.1c-e).  Bias estimates corroborate this observation approximately where 

strong positive bias (under prediction) was observed for both 5–15 cm (0.3) and 15–



Chapter 4 - Criteria and sampling for simultaneously measuring the quality of predictions and their 
uncertainties in a digital soil mapping framework  
 

146 
 

30 cm (0.2± 0.1).  For the depth increments of 30-60 cm and 60-100 cm, bias is 

smaller relative to the other depths; however the low accuracy can be attributed 

mainly to the higher level of imprecision at these sub-soil depths.  

For further analysis, mainly in assessing the quality of the uncertainty estimation, 

Figure 4.4.2 shows the deviation of the areal proportion of the map correctly 

predicted at the corresponding confidence levels for each depth increment. The PICP 

plots demonstrate a significant degree of sensitivity with change in confidence level. 

Between the 90% and 40% confidence levels it can be observed that the areal 

proportions demonstrate a pattern of increasing deviation from the desired result. 

This outcome is likely attributed to the bias observed within the predictions which 

has resulted in the bias being transferred to the PIs because they are empirically 

derived from the prediction errors. At higher confidence levels, the PI performs as it 

would be expected to, and also has the added benefit of being able to buffer the bias 

in the predictions. For predictions that have significant bias, it is with decreasing 

confidence levels that it becomes evident that there is some mis-specification of the 

PIs at these confidence levels. The fact that the observed deviations are below the 1:1 

line, indicates not only some misspecification of PIs, but more importantly is that the 

predictions of uncertainty are underestimated. In this regard this is better than the 

alternative where the areal proportions for a given confidence level are above the 

lines which would indicate the PIs are unnecessarily wide or in other words, an over-

estimation of the uncertainty. 
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Figure 4.4.2. Prediction interval coverage probability plots for the areal proportion 
correctly predicted at (a) 0-5 cm, (b) 5-15 cm, (c) 15-30 cm, (d) 30-60 cm, (e) 60-100 

cm. 

As expressed in Chapter 3 the aim of calculating uncertainties is to account for all 

perceived or known sources, including those associated with our poor understanding 

of soil patterns and processes, and those associated with the model and their 

parameters and model inputs (covariates). Because the approach to quantifying the 

uncertainties is evaluated empirically, bias in the predictions will inadvertently mean 

bias will be present also in the estimates of uncertainty.  This phenomenon was 

apparent in this study; the problem is that I used legacy soil data to generate the map 

which ultimately resulted in prediction bias. Consequently, this bias is reflected in 

the uncertainties as well. Because a probability sample was used to validate the pH 

map and their uncertainties I am able to discover such bias and subsequently an 

under-prediction of uncertainties. It is not always the case that independent data from 

a probability sample can be used for validation. Data splitting was used in Chapter 3, 

and at confidence levels from 5-99% there was a near matching proportion of 

observations which fitted within their PI for both available water and organic carbon. 

While a better result per se, it is clear to see that indicators of map quality are more 

valid when using an independent probability sample for validation.    



Chapter 4 - Criteria and sampling for simultaneously measuring the quality of predictions and their 
uncertainties in a digital soil mapping framework  
 

148 
 

From a map producer’s perspective, there is significant value in coupling the 

proposed criteria with those conventionally reported for soil map quality. Firstly, the 

APCP, RMSES and RMSE all indicated an increased uncertainty with soil depth. I 

am more confident in the quality of the soil map at the soil surface where the 

predictions themselves are more accurate, but more importantly, the uncertainties of 

those predictions are also adequately accounted for.  With increasing soil depth 

however, map quality decreases; there is decreased accuracy and precision of the 

actual predictions, coupled with a systematic underestimation of the uncertainties.  

Overall (at all depths) the issues of bias and imprecision need to be addressed in 

order to improve the accuracy. Ideally this would be done directly by improvement 

in the modelling of the spatial distribution of the soil properties, which would result 

in a decrease of the RMSES. The PIs would naturally adjust themselves accordingly 

and become narrower in the process.  

There are difficulties however with existing methods to make improved 

predictions within a DSM, particularly in the subsoil. One difficultly is that soil pH is 

evidently a dynamic soil property, which is likely to change as a result of human 

intervention such as agronomic practices (Bastida et al. 2008). From field knowledge 

of the study area, I expect however that significant change in pH as a result of 

intervention would only be minor. Rather, the difficulty is more the paucity of well 

known and available covariates that are able to describe soil attribute variability in 

the sub-surface.  

A question that then remains is whether other soil properties can be validated 

using the same sampling units used in this study? In short, it is not optimal to do so. 

The procedures for validation in this study were optimised based on the predictions 

and their uncertainties of soil pH. Because of this, the stratification may be 

inappropriate for other soil attributes (maps) that could be validated in this area. The 

intention of this project was not to validate multiple soil attributes; it was more the 

presentation of additional criteria for quantifying map quality. Nevertheless, for the 

sake of efficiency there may be a requirement that multiple soil attribute maps need 

to be validated concurrently.  One alternative to stratification on the basis of the 

predictions and their uncertainties is compact geographical stratification (Brus et al. 

1999; Walvoort et al. 2010). With this design, the target area is stratified on the basis 

of spatial coordinates, resulting in strata being independent of the soil map. With 

such a design, the same design-based inference could be used as that used in this 
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study (de Gruijter et al. 2006). Future studies will obviously need to properly 

investigate this alternative approach.   

4.5. Conclusions 

In the course of this chapter, first I impressed upon the need to assess the quality of 

the quantifications of uncertainty in a DSM framework as one does for assessing the 

quality of the predictions alone. Subsequently, I presented two new criteria that 

collectively address map quality in terms of both the predictions and their 

uncertainties. These criteria are largely based on the empirical coverage of PIs- the 

methodology for expressing prediction uncertainty. The MSES explicitly deals with 

the prediction accuracy in that it is a modification of the MSE, yet includes a 

measure of the map uncertainty within its formulation. The APCP deals mainly with 

the quality of the uncertainty component whereby I express with 95% confidence 

that the true value of a soil attribute lies between the two interval limits. I used 

additional samples collected from a probability sample to determine unbiased 

estimates of these quality measures in addition to conventional quality measures such 

as MSE, ME and imprecision. Coupling these two new criteria with conventional 

measures means more information is gained. And for a map producer, aids in the 

efforts to improve precision of the map. For the map user, greater clarity of decision 

making regarding for example the optimisation of inputs (fertilisers etc), monitoring 

soil changes or ameliorating soil threats can be made.  Regardless of the purported 

quality, it is up to the map user to determine the map’s fitness for use. The criteria I 

have proposed in this study ensure a more objective approach to those decisions. 
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Appendix 4.1. Accounting for measurement error in map validation 

Measurements that are used for validation may be so accurate that one can safely 

assume that the effects of measurement error on the validation results are negligible. 

That assumption cannot be made in this study, thus we have to consider the effects of 

measurement error. The validation criteria used in this study are areal proportion 

correctly predicted, Root Mean Squared Simulation Error, Root Mean Squared 

Prediction error, Mean Error, and Imprecision. All of these, except for the Mean 

Error, involve non-linear transformation of the measured pH: a 0/1 indicator 

transformation for the APCP and squaring for RMSE and Imprecision. This implies 

that, without the bias corrections as detailed hereafter, the estimates of these 'non-

linear' criteria would be biased. Especially the RMSE would be over-estimated, thus 

punishing the map for errors in the validation data, and all error variances would be 

underestimated. 

Estimation of the areal proportion correctly predicted 

As defined previously the criterion is defined as: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
1
‖𝐴𝐴‖

� 𝑖𝑖(𝑠𝑠)d𝑠𝑠
𝑠𝑠∈𝐴𝐴

 

[a4.1.1] 

where A is the mapped area, and i(s) equals 1 if the true pH value at location s is 

covered by the PI given by the map at s, and 0 otherwise. As we do not possess true 

pH values, we have no error-free i's either. Instead we have to work with indicator 

values determined from the measured pH values. These indicator values are thus 

subject to random error and denoted here by I(s). Each I(s) follows a Bernoulli 

distribution with expectation π(s), being the probability that a randomly measured pH 

value at s is covered by the PI at s (The pH measurements are assumed to have no 

systematic error.). The usual design-based estimator for APCP is: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� =  
1
‖𝐴𝐴‖

�
‖𝐴𝐴ℎ‖
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[a4.1.2] 
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where ‖𝐴𝐴ℎ‖ and 𝑛𝑛ℎ  are the surface area and sample size of stratum h, respectively, 

and 𝐼𝐼ℎ𝑗𝑗  is the indicator value as determined at the j-th sample point of stratum h. If 

the pH measurements were error-free, I(s) would equal i(s) for all s, and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�  

would be an unbiased estimator. This is not so in the present study. To investigate the 

bias of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�  we take its expectation over the process of measuring, conditional on a 

given sample 𝑺𝑺: 

𝐸𝐸𝑚𝑚�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� �𝑺𝑺� =  
1
‖𝐴𝐴‖
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𝑛𝑛ℎ

𝐻𝐻

ℎ=1

�𝐸𝐸𝑚𝑚�𝐼𝐼ℎ𝑗𝑗 �
𝑛𝑛ℎ

𝑗𝑗=1
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[a4.1.3] 

The conditional bias due to measurement error thus equals: 

𝐸𝐸𝑚𝑚�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� �𝑺𝑺� − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝑡𝑡 =  
1
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[a4.1.4] 

where 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝑡𝑡  is the (hypothetical) estimate based on error-free measurements. We 

could assess this bias numerically by simulation, but in the present case we may 

assume that it is small enough to be neglected. The reason is that the terms 𝜋𝜋ℎ𝑗𝑗 − 𝑖𝑖ℎ𝑗𝑗  

tend to be small and, more importantly, being both positive and negative they will 

largely cancel out. 

Estimation of the error variance of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�  

The error variance of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�  due to sampling and measurement error is estimated by: 

𝑉𝑉�(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) =
1
𝐴𝐴2 �
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[a4.1.5] 

where 𝑖𝑖ℎ  is the mean of the indicator values in stratum h. 

Estimation of the Mean Square Error 

The mean squared prediction error is defined as:  



Chapter 4 - Criteria and sampling for simultaneously measuring the quality of predictions and their 
uncertainties in a digital soil mapping framework  
 

154 
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where 𝑧𝑧𝑝𝑝(𝑠𝑠) and 𝑧𝑧(𝑠𝑠) are the predicted and true values at location s of the target 

variable, here pH. The MSE is estimated from stratified random sample data by: 
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[a4.1.7] 

Applying this estimator to measured values (𝑧𝑧𝑚𝑚 ) instead of true ones gives: 
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[a4.1.8] 

Assuming that the prediction error and the measurement error are spatially 

uncorrelated, this can be re-written as: 
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Taking the expectation over both sampling and measuring gives: 
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[a4.1.10] 

where 𝜎𝜎𝑚𝑚2  is the variance of the measurement error. It follows from (a4.1.10) that the 

usual estimate (a4.1.8) should be diminished with 𝜎𝜎𝑚𝑚2  to make it unbiased.   

Estimation of the Error Variance of 𝑀𝑀𝑀𝑀𝑀𝑀�  

The error variance of 𝑀𝑀𝑀𝑀𝑀𝑀�  due to sampling and measurement error is estimated by: 
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where 𝑑𝑑ℎ𝑗𝑗2 is the squared difference between the predicted and the measured value at 

location j in stratum h, and 𝑑̅𝑑ℎ2  is the stratum mean of the squared differences.
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Customer (walks into shop or milk bar and addresses shopkeeper): Bottle of milk 

thanks. 

Shopkeeper: (answering the customer in a frowning sort of way) Low fat, no fat, 

high fat, full cream, high calcium, high protein, soy, lite, skim, omega-3, high 

calcium with vitamin D and folate , or extra dollop? 

(Pregnant pause) 

Customer: Ah (quiet chuckle) I just want milk that tastes like real milk. 

...... 

[Australian television advertisement (2010)] 
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 Chapter 5 

Snakes and ladders: manipulations of scale for digital soil mapping 

Summary 

Part of making informed decisions regarding land management in an agronomical or 

ecological setting often requires having available, spatially explicit soil information. 

Whether the soil information that is available is compatible with what is required in 

terms of spatial scale is often questionable. Rather than continually conducting new 

soil survey to complement decision-making, one way to deal with the incompatibility 

issue is via manipulations of scale on the existing soil information. Manipulations of 

scale for digital soil mapping involve changes in map extent, grid cell resolution and 

prediction support. Subsequently, this chapter introduces explicit terminology to 

describe different forms of scale manipulation in the context of digital soil mapping. 

Furthermore, a suite of existing pedometric methods is described for implementation 

of each process.  The different forms of scale manipulation are described in terms of 

changes to grid cell spacing and prediction support. Fine-gridding and coarse-

gridding are operations where the grid spacing changes but support remains 

unchanged. Deconvolution and convolution are operations where the support always 

changes which may or may not involve changing the grid spacing. While 

disseveration and conflation operations occur when the support and grid size are 

equal and both are then changed equally and simultaneously.  
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5.1. Introduction 

The previous three chapters investigated practicable methodologies for digital soil 

mapping concerning whole-profile predictions, quantifying prediction uncertainties, 

and validating the predictions and their uncertainties. For the next two chapters, the 

focus shifts to matters of scale and manipulations thereof.   

Digital soil mapping involves the combination of soil observation (from field soil 

survey) and numerical methods to populate continuous spatially explicit soil 

information databases; the digital soil map being the final visual communicative 

product (Lagacherie 2008). Digital soil maps and associated soil information 

databases are used to enable land managers, modellers and policy makers to better 

understand and manage the soil resource either for agricultural benefit or for some 

other ecological purpose.  

The operational status of digital soil mapping now means that the availability of 

digital soil information products encompasses a hierarchy of spatial scales which 

include global, continental, national, region, farm and field scales (Grunwald et al. 

2011). Soil information availability may not be an issue per se; however, an often 

encountered problem is it is incompatible to meet the objectives of a given project or 

policy directive. The incompatibility issue is largely a matter of scale dissimilarity; 

soil information may be available at one scale, but may be required either at a finer 

or coarser scale and maybe even required at a different support or volume (Papritz et 

al. 2005). For example, digital soil maps created from point support measurements 

(soil cores, pits etc.) will generate point support maps which may not be of any use 

when a policy directive requires the support of predictions to be blocks or a specified 

land unit size. Rather than enduring with what is available, a way to get more value 

out of existing soil maps is to implement either upscaling or downscaling methods 

with the intention of creating soil information products that are nuanced with the 

requirements of the end users i.e. the land managers, modellers and policy makers.  

Downscaling and upscaling of soil information has previously received 

considerable attention. Various soil science workshops have been conducted, e.g. 

Finke et al. (1998) detail the breadth of issues with many examples concerning scale 

in the soil and water sciences domain. McBratney (1998) made some suggestions for 

a number of possible approaches for upscaling or downscaling soil information 

problems. Similarly, Bierkens et al. (2000) developed and presented a general 
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framework in the form of a decision tree to detail processes and their models for 

solving various scaling problems. Issues of scale incompatibility are not unique to 

the soil science domain, however. In climatology research, outputs of climate 

simulations from general circulation models (GCMs) cannot be directly used for 

hydrological impact studies of climate change because of a scale mismatch (Bloschl 

2005). The grid resolution of GCMs is generally in the order of hundreds of 

kilometres. In contrast, the resolution at which inputs to hydrological impact models 

are needed is in the order of tens or hundreds of square kilometres. Practitioners in 

the remote sensing domain also, in order to understand the underlying geophysical 

process of some atmospheric or environmental variables, often use two or more 

instruments which measure the same processes, but measure it at different spatial 

supports (Nguyen et al. 2010). As a consequence scaling methods are required to 

combine both information sources for making optimal inferences of the underlying 

process. Scaling, as an operative process, is essentially an inference of spatial 

processes at one resolution from data at another resolution; which in spatial statistics 

is often called the “change-of-support” problem (Cressie and Wikle 2011). The 

change-of-support problem presents many statistical challenges and has been 

reviewed in Gotway and Young (2002) with other important contributions from 

Cressie (1996) and Fuentes and Raftery (2005).    

The aim of this chapter is to describe a non-exhaustive suite of existing 

pedometric techniques or processes for conducting scale manipulation of digital soil 

maps that take into account the extent, resolution and support of the source (map to 

be scaled) and destination (new map) maps.   

5.2. Some concepts 

5.2.1 The digital soil map model 

The raster model is the principal format on which digital soil maps are displayed, 

where each pixel or grid cell (the single unit entity of a raster), which has a spatially 

explicit location, contains a value for a given target soil property. Digital soil maps 

have three scale entities; extent, resolution, and support for which Western and 

Bloschl (2005) termed the scaling triplet when discussing scaling issues for 

hydrological modelling. Map extent is the areal expanse or coverage, such that the 

map could be a soil map of the world, a country, a region, or a particular farm. 
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Resolution is the grid cell spacing or pixel size of the raster. A map made up of 

pixels which have dimensions of 10m × 10m is a map with a resolution of 10m. 

While support is likened to a volume or area which the predictions are representative 

of; this could either be points (that have no defined area or volume) or blocks (which 

have a measurable area or volume). The scaling triplet is conceptualised by a generic 

soil map model (Bishop et al. 2001) which consists of a soil variable, which is 

estimated with some uncertainty. This variable is predicted onto grid cell spacing, G 

that has a support B which could be a point or a block (Figure 5.2.1).  

 

Figure 5.2.1.  Generic soil map model (adapted from Bishop et al. 2001). Support of 
predictions are point when block B is very small. Block support prediction occur 
when B is greater than 0. Block support 1 is when B equal grid spacing G. Block 

support 2 is when B is greater than G. B may be larger than grid spacing. 

The soil map model is the same as a raster model when G is equal to B (block 

support 1 of Figure 5.2.1). Because B has some definable dimensions or support it 

has some area or volume and the value attributed to it represents an averaged value 

for that area or volume. When B is very small, the map model is essentially a grid of 

points; the support in this case is a point (point support of Figure 5.2.1). Despite both 

maps being displayed on the same raster model because they have equal G, they are 

fundamentally different because they have different supports; the values attributed to 

the pixels mean different things. For further complexity, B may even be bigger than 
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G, which is quite common in situations where block kriging is used (block support 2 

of Figure 5.2.1). A situation where this would be used, as discussed by Bishop et al 

(2001), is where a map producer using block kriging may want a dense coverage of 

information (finely spaced G), but to reduce the uncertainty of prediction may choose 

a much larger B than G.  

5.2.2. Scaling digital soil maps 

This chapter addresses the posterior problem of how does one without additional 

sampling, perform either upscaling or downscaling of a map of some target variable 

across a particular extent with a resolution G and support B.  

Manipulations of the map extent can and usually are coupled with increasing or 

decreasing the grid cell spacing in order to upscale or downscale respectively 

(McBratney 1998). However in accordance with the digital soil map model where 

predictions have some sort of spatial support, upscaling and downscaling may be too 

general or nebulous in meaning. Aggregation and disaggregation have an equivalent 

meaning to upscaling and downscaling in soil science (Bierkens et al. 2000). 

However these terms are also used frequently to describe procedures for combining 

or separating traditional soil map class/units respectively. To this end, new 

terminology needs to be introduced that provides explicit meaning to scaling 

methods for digital soil maps both in terms of moving up or down the hierarchy of 

scales and through increasing or decreasing the support of the predictions. 

The four panels of Figure 5.2.2 illustrate contrived examples of digital soil maps, 

all of which have the same spatial extent. Panel 1 (P1) and Panel 2 (P2) are the same 

raster model, but different digital soil map models. The grid spacing is the same but 

in P1 the support is a point, while in P2 the support is a block where B has 

dimensions equal to G. The situation is the same when comparing P3 with P4. 

Obviously P1 has finer grid spacing than P3 and it should be assumed that in the 

hierarchy of scales P1 is below P3 meaning a smaller scale and in reality may or may 

not have a smaller extent. It is also to be assumed that P1 and P2 exist on the same 

level of the scale hierarchy.  
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Figure 5.2.2.  Exemplar soil map models. Panel 1 and Panel 2 have the same grid 
spacing yet Panel 2 is on block support (where block size is equal to the grid 

spacing), Panel 1 is on point support. Similarly for Panel 3 and Panel 4 except the 
grid spacing is larger. 

The intent of Figure 5.2.2 is to provide some visual reference for scaling 

methods with regards to the previously defined digital soil map model. The scaling 

methods are summarised in Table 5.2.1 and is to be interpreted by deciding firstly 

which soil map model suits the source map with a corresponding row selection. This 

is followed by a column selection of the digital soil map model that is the desired 

scale destination of the new map. The row and column coordinate pair then refer to 

the scaling method required to perform the process. The scaling methods are: 

Fine-gridding and Coarse-gridding:- These are situations where G changes but B 

remains unchanged. Examples of fine-gridding are situations where a process of 

moving from Panel 3 to Panel 1 (Figure 5.2.2; P3→P1) is required. While coarse-

gridding situations involve P1→P3 processes. 
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Deconvolution and Convolution:- These are situations where B always changes 

which may or may not involve changing G. However when both B and G are equal 

and changed simultaneously, the changes are not equally applied. Convolution 

processes always involve an increase in B, with the examples being P1→P2, P1→P4, 

P3→P2, P3→P4 operations. Deconvolution always involves a decrease in B such as 

P2→P1, P2→P3, P4→P1 or P4→P3 processes. 

Disseveration and Conflation:- These are situations when B and G are equal and both 

are changed equally and simultaneously. Examples of disseveration are situations 

where a P4→P2 process is required. Conflation situations involve P2→P4 processes. 
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Table 5.2.1. Coordinate table of scaling processes based on attributes of the source 
map (rows) and scale attributes of destination map (columns). 

 Process 

Points (fine) Blocks (fine) Points (coarse) Blocks 

(coarse) 

Points (fine) 
 Convolution Coarse-

gridding 

Convolution 

Blocks (fine) Deconvolution  Deconvolution Conflation 

Points (coarse) Fine-gridding Convolution  Convolution 

Blocks 

(coarse) 

Deconvolution Disseveration Deconvolution  

5.3. Specific discussion of scaling methods for digital soil mapping. 

This section explores in more detail some pedometric procedures for performing 

each of the described scaling processes. When considering the hierarchy of spatial 

scales recognised for soil (Hoosebeek and Bryant 1992), the i-levels of interest for 

applying the described scaling processes in the context digital soil mapping would be 

global (i+6), continental (i+5), region (i+4), watershed (i+3), farm (i+2) and field 

(i+1) scales. The methods discussed are not exhaustive and focus on one or two 

procedures that could be implemented to create the outputs at the desired scale.   

5.3.1. Fine-gridding and coarse-gridding 

The most common scaling methods that would be encountered in digital soil 

mapping would be either fine-gridding or coarse-gridding operations. These are 

operations where the grid spacing G changes without any change of the support i.e. B 

remains constant. Considered point-to-point processes, fine-gridding is a 

downscaling problem whereas coarse-gridding is an upscaling problem. 

Fine-gridding requires some form of point interpolation or spatial prediction. A 

stochastic process such as ordinary punctual kriging may be used to interpolate onto 

the finely resolved grid nodes. See Isaaks and Srivastava (1989) for more theoretical 

details of ordinary kriging. Assuming the mean is unknown; the values at the 
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interpolated point locations (fine resolution points) are treated as random variables 

and are estimated from surrounding point predictions at the coarser scale. The 

ordinary punctual kriging predictor is:   

𝑍̂𝑍(𝑥𝑥0) =  �𝜆𝜆𝑖𝑖

𝑁𝑁

𝑖𝑖=1

∙ 𝑧𝑧(𝑥𝑥𝑖𝑖) 

[5.3.1] 

where 𝑍̂𝑍(𝑥𝑥0)  is the value of the target variable at  unvisited location 𝑥𝑥0 which is 

predicted from a weighted linear combination of N neighbouring point 

observations 𝑧𝑧(𝑥𝑥𝑖𝑖) at the coarser scale with weights λi. To ensure an unbiased 

estimate the weights from the vector λ are made to sum to 1 and are obtained by 

solving the ordinary kriging system: 

�𝛌𝛌𝛍𝛍� = 𝐀𝐀−𝟏𝟏 ∙ 𝐬𝐬 

[5.3.2] 

where 𝛍𝛍 is a Lagrange multiplier necessary to solve the system, 𝐀𝐀 is a matrix with 

semi-variances between the data points at the coarse resolution and has the structure: 

𝑨𝑨 =

⎣
⎢
⎢
⎢
⎡
𝛾𝛾(𝑥𝑥1, 𝑥𝑥1)
𝛾𝛾(𝑥𝑥2, 𝑥𝑥1)

  ⋮
𝛾𝛾(𝑥𝑥𝑁𝑁 ,𝑥𝑥1)

1

    𝛾𝛾(𝑥𝑥1, 𝑥𝑥2)
     𝛾𝛾(𝑥𝑥2, 𝑥𝑥2)

  ⋮
      𝛾𝛾(𝑥𝑥𝑁𝑁 ,𝑥𝑥2)

1

     …     
…
…
…
…

𝛾𝛾(𝑥𝑥1, 𝑥𝑥𝑁𝑁)
𝛾𝛾(𝑥𝑥2, 𝑥𝑥𝑁𝑁)

  ⋮
𝛾𝛾(𝑥𝑥𝑁𝑁 ,𝑥𝑥𝑁𝑁)

1

     

1
1
⋮

 1
 0⎦
⎥
⎥
⎥
⎤
 

[5.3.3] 

where 𝛾𝛾 is semi-variance. The vector 𝐬𝐬 contains the semi-variances between the 

coarse-scaled points and the fine-scaled point 𝑥𝑥0 and has the structure: 

𝒔𝒔 =

⎣
⎢
⎢
⎢
⎡
𝛾𝛾(𝑥𝑥1, 𝑥𝑥0)
𝛾𝛾(𝑥𝑥2, 𝑥𝑥0)

  ⋮
𝛾𝛾(𝑥𝑥𝑁𝑁 ,𝑥𝑥0)

1

     

⎦
⎥
⎥
⎥
⎤
 

[5.3.4] 

The kriging variance is equated as: 

𝜎𝜎�2(𝑥𝑥0) = 𝒔𝒔𝑻𝑻𝛌𝛌  

[5.3.5] 
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For DSM, the value of 𝑧𝑧(𝑥𝑥𝑖𝑖) will often be uncertain, such that the exact value 

will not be known. These uncertainties could be measurement or prediction errors 

and need to be accounted for in the kriging system. Kriging with uncertain data was 

introduced by Delhomme (1978) and the method requires some modification of the 

standard ordinary kriging equations. However, to do this we need to assume 1) the 

errors have a zero mean; 2) the errors are uncorrelated; 3) the errors are not 

correlated with the target variable; 4) the variance of the errors is a known quantity 

and varies from point to point (Delhomme 1978). Under these assumptions, 

following the formulations from Christensen (2011) the semi-variance elements (i, j) 

of the matrix A can be modified on the off-diagonals i.e. where i ≠ j to: 

(𝑖𝑖, 𝑗𝑗) element of 𝐀𝐀 = 𝛾𝛾�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 � +
𝜎𝜎2(𝑥𝑥𝑖𝑖) +  𝜎𝜎2�𝑥𝑥𝑗𝑗 �

2
 

[5.3.6] 

where 𝜎𝜎2 is the measurement error variance. Furthermore, the ith element of the s 

matrix is modified to: 

𝑖𝑖𝑖𝑖ℎ of element of 𝐬𝐬 = 𝛾𝛾(𝑥𝑥𝑖𝑖 , 𝑥𝑥0) +
𝜎𝜎2(𝑥𝑥𝑖𝑖)

2
  

[5.3.7] 

Bear in mind these adjustments are only valid when the target variable is not 

correlated with the error variances. While more problematic, Christensen (2011) 

formulates a method for dealing with correlated error variances for kriging with 

uncertain data which is based upon using variance-stabilising transformations as 

proposed by Box and Cox (1964). 

Before any of this can be done however, and to be consistent, one needs to 

correct the variogram for the measurement errors. A simple way to correct for the 

bias of the variogram due to measurement errors is to calculate the spatial average of 

the error variances �1
𝑁𝑁
∑ 𝜎𝜎2(𝑥𝑥𝑖𝑖)𝑁𝑁
𝑖𝑖=1 � and to subtract this average from the variogram 

(Christensen 2011). In practice, a semi-variogram is fitted to all 𝑧𝑧(𝑥𝑥𝑖𝑖)  from which 

the variogram parameters of the nugget, partial sill and range, denoted as cZ, vZ,and  

rZ respectively, are obtained. To correct the variogram we simply subtract 
1
𝑁𝑁
∑ 𝜎𝜎2(𝑥𝑥𝑖𝑖)𝑁𝑁
𝑖𝑖=1  from cZ. In general the range and partial sill are unaffected by the bias 

correction (Christensen 2011). Occasionally the estimated nugget may be less than 
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the averaged measurement error variance. When the spatial average of the error 

variances subtracted from the nugget variance is less than zero (i.e.  cZ - 
1
𝑁𝑁
∑ 𝜎𝜎2(𝑥𝑥𝑖𝑖)𝑁𝑁
𝑖𝑖=1  < 0), the nugget for the adjusted semi-variogram can be set to zero. 

The adjusted partial sill can be set to 𝑣𝑣𝑍𝑍 + 𝑐𝑐𝑍𝑍 −
1
𝑁𝑁
∑ 𝜎𝜎2(𝑥𝑥𝑖𝑖)𝑁𝑁
𝑖𝑖=1 ,  so that the sill (sum 

of the nugget plus partial sill) is still reduced by 1
𝑁𝑁
∑ 𝜎𝜎2(𝑥𝑥𝑖𝑖)𝑁𝑁
𝑖𝑖=1  (Christensen 2011).   

Continuing on with another method of fine-gridding; if fine scaled 

environmental covariate data is available, a deterministic empirical or data mining 

approach could be implemented for which an overview of methods is given in 

McBratney et al (2000). Combining both deterministic and stochastic processes 

through a regression kriging approach is also another viable option; the method of 

which is detailed by Odeh et al. (1995). There is a good logical consistency in 

transfer between the hierarchies of scales using available covariate information; we 

know that the variation of soil properties depends on factors such as parent material, 

climate, land use and topography. These factors all operate at different scales and 

therefore influence soil processes and soil variation at different scales (Addiscott 

1993). For example, a soil map of carbon variability may be available at 1km 

resolution over a large extent for which one could discern that climatic variables 

maybe be dominant factors controlling the carbon distribution. One then may want to 

use this map to determine what the carbon variability is at a particular farm at a 

resolution more interpretable for farm management decisions; for example, at 25m 

resolution. Climatic variables may be inconsequential at the scale of a farm, rather 

factors such as landuse or landscape position may be better able to explain the soil 

carbon variation. Thus, when using covariate information for fine-gridding 

operations it is important to consider what factors are dominating at the scale for 

which information is being downscaled to. This information is likely to be garnered 

from expert knowledge of the target variable and how it varies across different 

scales. 

Coarse-gridding is a trivial upscaling exercise and is popularly practiced within 

Geographical Information Science (GIS) environments through such operations as 

re-sampling fine-gridded data to a coarser resolution. Nearest-neighbour samplings 

in addition to averaging and smoothing spline type operations are popular re-

sampling methods. One must be careful that in the context of coarse-gridding, B 
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remains constant in the scaling procedure. Therefore in the context of the digital soil 

map model, regardless of whether an averaging or smoothing spline re-sampling 

procedure is used, the upscaled soil information product will still be on point support. 

A crude way of describing what coarse-gridding does, is that the map producer is 

effectively throwing some data away. The purpose of this may be because of a 

computer memory saving reason or that a particular map at a fine-scale is difficult to 

interpret and by performing coarse-gridding the map becomes simpler.  

5.3.2. Deconvolution and convolution 

Manipulations of scale that involve changing the support coupled with or without 

changing the grid spacing involve either deconvolution or convolution. Convolution 

is an upscaling problem because all situations entail increasing the support of the 

predictions, for example, point-to-block operations. Deconvolution is a downscaling 

problem where always the support size is decreased i.e. a block-to-point operations.  

For both convolution and deconvolution, changing the support is always performed, 

but changing the grid spacing is not always necessary. 

5.3.2.1. Convolution problems 

One form of convolution includes P1→P4 scaling processes. Here the grid spacing 

increases in addition to an increase in the support of the predictions. Because each 

block has many point observations, convolution could involve averaging the point 

observations contained within each block or pixel (Bierkens et al. 2000), such that: 

𝑍̅𝑍𝐻𝐻 =  
1
𝑁𝑁
�𝑧𝑧(𝑥𝑥𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

 

[5.3.8] 

 

where the prediction of a single block Z with support H is obtained as an average of 

all 𝑧𝑧(𝑥𝑥𝑖𝑖) within H. The variance is then computed as: 

𝜎𝜎�2(𝑍̅𝑍𝐻𝐻) =  
1

𝑁𝑁 − 1
�[𝑧𝑧(𝑥𝑥𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

− 𝑍̅𝑍𝐻𝐻]2 

[5.3.9] 
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It is necessary to indicate the variance so as to derive a confidence interval about the 

block average because the estimate is based only on a limited (not exhaustive) 

number of points. However the derivation of a confidence interval is based on the 

assumption that the N points are independent and that the sample mean follows a 

normal distribution. Brus and de Gruijter (1997) state that independence can be 

created through randomisation of the point locations. For P1→P4 processes the 

distribution of the points will not be randomly distributed; they will in fact be 

regularly spaced points. This means that the coverage of points within each block 

may be useful in the practicable sense of deriving a meaningful block average, yet 

the suitability of this method from a statistical view is not optimal. While not 

optimal, the suitability of implementing this particular P1→P4 process will rely on 

having many (for example >50) points within each block. 

Alternatively when there are a sparse number of points inside each block, 

ordinary block kriging could be used (Burgess and Webster 1980). This geostatistical 

method is suitable because the aim of block kriging is to predict the mean value of a 

target variable in a region V of area H that centres on a point at x0. The block kriging 

estimator is defined as: 

𝑍̂𝑍𝐻𝐻(𝑥𝑥0) =  �𝜆𝜆𝑖𝑖

𝑁𝑁

𝑖𝑖=1

∙ 𝑧𝑧(𝑥𝑥𝑖𝑖) 

[5.3.10] 

The predictor Z with support H is obtained from a weighted linear combination of N 

neighbouring point observations 𝑧𝑧(𝑥𝑥𝑖𝑖). The weights (𝜆𝜆𝑖𝑖) are obtained by solving the 

block kriging system which is the same as that for ordinary punctual kriging. In 

these cases the area of H will be the dimensions of the pixels to which the fine-

scaled point observations need to be upscaled to. However, one difference between 

point and block kriging is the nature of the 𝐬𝐬 vector, such that: 

𝒔𝒔 =

⎣
⎢
⎢
⎢
⎡
𝛾̅𝛾(𝑥𝑥1, 𝑥𝑥0)
𝛾̅𝛾(𝑥𝑥2, 𝑥𝑥0)

  ⋮
𝛾̅𝛾(𝑥𝑥𝑁𝑁 ,𝑥𝑥0)

1

     

⎦
⎥
⎥
⎥
⎤
 

[5.3.11] 
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where 𝛾̅𝛾 is the average semi-variance between 𝑥𝑥𝑖𝑖  and 𝑥𝑥0 which is given by the 

integral: 

𝛾̅𝛾(𝑥𝑥𝑖𝑖 ,𝐻𝐻) =
1

|𝐻𝐻|� 𝛾𝛾(𝑥𝑥𝑖𝑖 , 𝑥𝑥)
𝐻𝐻

dx 

[5.3.12] 

where 𝛾𝛾(𝑥𝑥𝑖𝑖 , 𝑥𝑥) denotes the semi-variance between the point 𝑥𝑥𝑖𝑖  and a point x 

describing the block. The block kriging variance is equated as: 

𝜎𝜎�2(𝑥𝑥0) = 𝒔𝒔𝑻𝑻𝛌𝛌 − 𝛾̅𝛾(𝐻𝐻,𝐻𝐻) 

[5.3.13] 

where 𝛾̅𝛾(𝐻𝐻,𝐻𝐻) is the within-block averaged semi-variance value.  

Other convolution problems are those processes requiring scaling from P1→P2 

or P3→P4. Consider the situation where a digital soil map may be available at point 

support where each pixel value represents a single point within the areal extent of the 

pixel (usually the central node). Without additional sampling, it may be necessary to 

know what the average of the target variable is across the entire area of each pixel. 

To perform this task, it is strictly a procedure where change of support is required 

without changing the grid size and can be performed using block kriging. To increase 

the support of a point map all that is required is to set the block size H equal to the 

grid spacing. An example of this is detailed in the following section. 

5.3.2.2. Block Kriging example of P1→P2 processes 

The gamma radiometric signal of thorium was collected using a proximal sensing 

device across fields at the I.A. Watson Grains Research Institute (30.27°S 149.80°E), 

a 460-ha property near Narrabri, in north-western New South Wales. Much of the 

property is under agricultural management where cereals (wheat, rye and triticale) 

have been bred under traditionally managed, irrigated cropping operations for more 

than half a century. For further details regarding this site, see Miklos et al. (2010). In 

the Summer of 2010, observation of thorium concentration (ppm) was made onto a 

regular grid of points with 5m spacing (point support map). Each independent 

observation also had some quantitative value of the measurement error given as a 

variance. Both maps are shown in Figure 5.3.1. 
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Figure 5.3.1. Panel 1- 5m point support thorium concentration (ppm) map. Panel 2- 
Associated variances of the measurement errors (also at 5m point support) of thorium 

concentration (ppm). 

The aim of the example is to create new maps on block support with resolutions 

of 20m, 50m, and 80m, meaning that the block sizes are 20m×20m, 50m×50m and 

80m×80m respectively. The reason why three increasingly larger resolutions are used 

is for comparative purposes in assessing the quality of the outputs of the P1→P2 

processes.  

Using the 5m point map, a simple way to generate block support maps at these 

desired resolutions and supports is to average all the observations within each block. 

This particular procedure is in fact a P1→P4 process (section 5.3.2.1). Because there 

is some uncertainty about the 5m spaced observations, we may arithmetically 

determine the average estimate of thorium (ppm) in each block as: 

𝑇𝑇𝑇𝑇���� =
∑ �𝑇𝑇𝑏𝑏𝑖𝑖𝑠𝑠𝑖𝑖2

�𝑁𝑁
𝑖𝑖=1

∑ � 1
𝑠𝑠𝑖𝑖2
�𝑁𝑁

𝑖𝑖=1

 

[5.3.14] 
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where 𝑇𝑇𝑇𝑇���� is the weighted averaged value of a block, N is the number of point 

observations of the target variable 𝑇𝑇𝑏𝑏𝑖𝑖  within each block, and with measurement 

error variance  𝑠𝑠𝑖𝑖2. The variance of 𝑇𝑇𝐵𝐵���� can be estimated by:  

𝑣𝑣𝑣𝑣𝑣𝑣(𝑇𝑇𝐵𝐵����) =
1

∑ 1
𝑠𝑠𝑖𝑖2

 𝑁𝑁
𝑖𝑖=1

×
1

(𝑁𝑁 − 1)
�

(𝑇𝑇𝑏𝑏𝑖𝑖 − 𝑇𝑇𝐵𝐵����)2

𝑠𝑠𝑖𝑖2

𝑁𝑁

𝑖𝑖=1

 

[5.3.15] 

Figure 5.3.2 shows the block support maps in panel 1a, 1b and 1c. The spatial 

average of the 𝑣𝑣𝑣𝑣𝑣𝑣(𝑇𝑇𝐵𝐵����) was 2×10-3 , 7×10-4, and 5×10-4 for the 20m, 50m, and 80m 

maps respectively. We could consider these maps as the ‘true’ block support maps 

and use them to compare with the outputs of the P1→P2 process, which is described 

now. 
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Figure 5.3.2. Block support maps of thorium (ppm) where support size equals grid 
cell size (resolution) - a) 20m, b) 50m, and c) 80m. Panel 1- ‘true’ blocks created 
directly from 5m point support map with a P1→P4 process- weighted averaging. 

Panel 2- P1→P2 process- Block kriging with uncertain data. Panel 3- P1→P2 
process- Block kriging without including uncertainties.    

Firstly, using the 5m point support map, coarse-gridding (P1→P3) was performed to 

generate new maps. For example, to create the 20m point support maps (thorium 

ppm and variance) we sample the 5m maps at grid nodes every 20m apart and so on. 

Block kriging is used (as described in section 5.3.2.1) to create the desired block 

support maps from the given point support maps where the support H is set to the 
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same size as the map resolution. However, because there is uncertainty about the true 

values of all 𝑇𝑇𝑏𝑏𝑖𝑖  expressed as prediction or measurement error variances, there is a 

need to modify the standard ordinary block kriging equations. We can assume the 

error variances are independent of 𝑇𝑇𝑏𝑏𝑖𝑖  and carry out what was described for punctual 

kriging with uncertain data in section 5.3.1 by modifying the A and s matrices 

accordingly which are formulated in Equations 5.3.3 and 5.3.4 respectively. 

Similarly the variogram of  𝑇𝑇𝑏𝑏𝑖𝑖  is adjusted to correct for the bias due to measurement 

errors where the spatial average of the error variances �1
𝑁𝑁
∑ 𝜎𝜎2(𝑥𝑥𝑖𝑖)𝑁𝑁
𝑖𝑖=1 � is subtracted 

from the variogram (Christensen 2011).  Because block kriging is being used, the ith 

elements of the s matrix is modified to: 

𝑖𝑖𝑖𝑖ℎ of element of 𝐬𝐬 = 𝛾̅𝛾(𝑥𝑥𝑖𝑖 , 𝑥𝑥0) +
𝜎𝜎2(𝑥𝑥𝑖𝑖)

2
  

[5.3.16] 

The block kriging variance is equated as in Equation 5.3.13. 

Panel 2 of Figure 5.3.2 shows the maps that resulted from block kriging with 

uncertain data for each of the three resolutions and supports. For a comparative 

exercise, block kriging without including the uncertainties using the standard 

ordinary block kriging equations was also performed and the maps are shown in 

Panel 3 of Figure 5.3.2. While quite similar to the ‘true’ block support maps, 

including the measurement error variances into the kriging equations resulted in 

smoother representations of thorium concentration (ppm) at each of the three 

supports. The spatial average of the kriging variances from kriging with the uncertain 

data were 3×10-2, 6×10-2, and 9×10-2 for the 20m, 50m, and 80m maps respectively. 

The spatial averages of the kriging variances when not including the error variances 

was 2×10-3, 3×10-2, and 5×10-2 for the 20m, 50m, and 80m maps respectively. 

Essentially what these results represent is that for P1→P2 processes, the uncertainty 

increases with increasing resolution and support size. Logical also is the fact that the 

uncertainties are higher when kriging is performed using uncertain data compared 

with when the data is assumed to be without error. In any case the spatial averages of 

the kriging variances from both methods were higher than found for the ‘true’ 

blocks, which is to be expected. 
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The plots on Figure 5.3.3 illustrate the similarity of the maps resulting from 

kriging with uncertain data with the ‘true’ block maps. With 20m blocks, Lin’s 

Concordance (CCC; section 2.2.5) was quantified as 0.97 while the R2 was found to 

be 0.94. This indicates a high degree of similarity between the ‘true’ and predicted 

map. By not including the measurement error variances however, both the ‘true’ and 

predicted maps are very close to identical where a CCC of 1 was quantified. 

Similarly with the 50m blocks, the map resulting from kriging with uncertain data is 

a very good representation of the ‘true’ block map (CCC=0.95). With 80m blocks the 

CCC was found to be 0.93. At these two supports (50m and 80m), kriging without 

uncertain data resulted in outputs very similar to that of the ‘true’ blocks and better 

than that for when the measurement error variances were included. 
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Figure 5.3.3. Map comparisons. Comparisons between ‘true’ block maps with maps 
from block kriging with uncertain data a) 20m, b) 50m, and c) 80m. Comparisons 
between ‘true’ block maps with maps from block kriging without uncertain data d) 

20m, e) 50m, and f) 80m.  

From this example of a P1→P2 process, block kriging tends to work better when 

smaller supports and resolutions are used. This is because more data close to the 
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location where a prediction is to be made is available. When uncertain data are used 

for kriging, the resulting maps will be smoother than when they are not. Empirically 

from this example, this is because more weighting (from the kriging weights) is 

assigned to points further away from the location where a prediction is to be made.  

5.3.2.3. Further convolution problems 

Convolution problems could also involve situations where one requires a process for 

scaling from P3→P2. The purpose for these processes may be that in addition to 

requiring point predictions to be expressed on an areal support, the target variable 

information is needed at a finer resolution to what is currently available. It is possible 

to achieve this directly through such methods as ordinary block kriging or universal 

block kriging. Because there is a need to describe the variation of a target variable at 

a finer resolution, ordinary block kriging would suit in situations where no available 

covariate information is available. A preferable alternative is where covariate 

information is available, for which universal block kriging or kriging with external 

drift would be suited. Universal kriging may be described as some spatial process 

which comprises both stochastic and deterministic components, and represented is by 

the general model:    

𝑍𝑍(𝑥𝑥) =  �𝑎𝑎𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥) + 𝜀𝜀(𝑥𝑥)
𝐾𝐾

𝑘𝑘=0

 

[5.3.17] 

The deterministic component is represented in the above equation by a set of 

functions (usually first or second order polynomials), 𝑓𝑓𝑘𝑘(𝑥𝑥), k= 0, 1, …, K, and  

unknown coefficients 𝑎𝑎𝑘𝑘  which need to be estimated based on the relationship 

between the target variable and covariates. The 𝜀𝜀(𝑥𝑥) term is the stochastic field with 

zero mean. A block universal kriging estimate of a target variable centred by a point 

𝑥𝑥0 based on n point observations at neighbouring sites is:     

𝑍𝑍𝐻𝐻(𝑥𝑥0) =  ��𝑎𝑎𝑘𝑘𝜆𝜆𝑖𝑖𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖)
𝑛𝑛

𝑖𝑖=0

𝐾𝐾

𝑘𝑘=0

 

[5.3.18] 

where 𝜆𝜆𝑖𝑖  are the kriging weights. More detail regarding universal kriging can be 

found in Webster and Oliver (2001).   
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These particular forms of convolution (where G decreases and B increases) may 

also be achieved indirectly by means of performing the fine-gridding (P1→P3) and 

convolution as previously described (P3→P4), independently. In this example the 

original point support map is firstly fine-gridded using methods previously described 

which may or may not involve using covariate information. The second step involves 

increasing the support without changing the grid spacing, which was described 

earlier by means of block kriging. This is the logical route to follow; the alternative 

route i.e. P1→P2→P4 involves in addition to a decrease in resolution, two changes 

of support (with one step involving disseveration), which would not only be 

unnecessary but also a complex procedure and difficult to validate with each 

independent step.  

5.3.2.4. Deconvolution problems 

Deconvolution is a downscaling problem which involves a decrease in support such 

as acquiring point estimates from areal information. Digital soil mapping examples 

for deriving point estimates from areal information are not uncommon in soil map 

disaggregation exercises where a map producer will require some method to 

discretise points within polygons prior to generating soil attribute maps (Goovaerts 

2011). Of the range of methods available, Area-to-Point kriging (Kyriakidis 2004) 

would be a suitable method for the deconvolution of raster-based digital soil maps. 

Area-to-Point (AtoP) kriging is essentially the counterpart of block kriging in that 

point estimates are obtained from areal (block) measurements.  In the case of digital 

soil map deconvolution, each pixel is a block where the pixel value is some spatially 

averaged estimate of the target variable. The idea of AtoP kriging for deconvolution 

is therefore to use this areal information to discretise point estimates on a regular grid 

spacing as defined by the map producer. The AtoP kriging estimate for any given 

point 𝑥𝑥0 is expressed as:       

𝑍𝑍𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑥𝑥0) =  �𝜆𝜆𝑖𝑖

𝑛𝑛

𝑖𝑖=1

∙ 𝑍𝑍(𝑣𝑣𝑖𝑖) 

[5.3.19] 

where n is typically smaller than the total number of block or pixels; for example (n-

1) is the number of blocks adjacent to the block 𝑣𝑣𝑏𝑏  where the point estimation is 

required. A key property of AtoP kriging is that it preserves the mass-balance or 
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pycnophylactic property of the blocked data; such that the average of all discretised 

points within each 𝑣𝑣𝑏𝑏  returns the areal value of 𝑍𝑍(𝑣𝑣𝑏𝑏). However, the constraint of 

equation 5.3.19 is that the same n areal data are used for prediction at each location 

within the block 𝑣𝑣𝑏𝑏  where the point estimations are required (Goovaerts 2011). 

Furthermore, because areal or block estimates are used to derive point predictions, 

there is a requirement to know the point support variogram model. Obviously this is 

not available so it must be evaluated, which is done in two steps: 1) compute and 

model the variogram of the areal data, and 2) deconvolute the block-support model to 

derive the point support variogram. Goovaerts (2008) proposed an iterative 

deconvolution procedure that seeks the point support model that, once regularised, is 

the closest to the model fit of the areal data. A more detailed explanation of AtoP 

kriging is given in Kyriakidis (2004).  

5.3.3. Conflation and Disseveration 

Conflation and disseveration are strictly procedures to deal with problems for 

moving up and down scales when the data has some sort of areal support i.e. block-

to-block processes. Conflation and disseveration procedures deal strictly with 

processes where the support and the grid spacing are equal and both are changed 

equally and simultaneously. In accordance with Figure 5.2.2 conflation processes 

require scaling from P2→P4. A conflation process would be carried out where given 

a large project area extent a map producer requires regional predictions of a target 

variable using available fine scaled areal estimates such as those derived for farm 

scales. Conflation here is a trivial upscaling problem and involves simply the 

averaging of the finer scaled areal observations within each coarser scaled block. 

With this upscaling procedure, while the overall mean of the target variable across 

the same map extents will remain unchanged, the overall variance will decline as the 

block and grid spacing simultaneously increase. The decline in variance will with 

increasing resolution result in the creation of homogeneous maps (Jelinski and Wu 

1996). 

Disseveration procedures are more complex and equate to those processes 

requiring scaling from P4→P2. Complexity here is due to the requirement that in 

addition to needing a method for estimating the variation of the target variable at a 

fine resolution—given that only the value at the coarse resolution is known—there is 
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a need to maintain the mass balance of the pycnophylactic property. Such that the 

target variable value given for each coarse grid cell equals the average of all target 

variable values at the fine scale in each coarse grid cell. This additional requirement 

of mass-preservation is the explicit difference between downscaling methods that 

involve simply fine-gridding which is essentially a points-to-points procedure and 

those which involve disseveration which is a block-to-block procedure.  

An example of where disseveration would be enacted would be in a situation 

where regional estimates of a target variable (at block support) are available only at a 

coarse resolution and there is a requirement to generate estimates of this property to a 

farm or even field scale. It is therefore quite reasonable to expect that downscaling 

here also involves a reduction of the areal extent in addition to reduction of the 

spatial resolution.  

More is discussed about disseveration in Chapter 6 where a suite of possible 

methods is detailed. Also in Chapter 6 a novel procedure for disseveration, suitable 

for DSM, is introduced which uses available gridded environmental information or 

covariates.  

5.3.4. Further solutions for scaling problems 

The scaling processes described so far are specific for a given problem. For example, 

block kriging for P1→P4 processes (convolution), point kriging for P3→P1 

processes (fine-gridding), area-to-point kriging for P4→P1 processes 

(deconvolution) and disseveration for P4→P2 processes. Recently however, Gotway 

and Young (2007) introduced a generalised geostatistical framework that in addition 

to solving the problems of scaling described in this chapter can also be implemented 

for other problems that cannot be visualised by using the contrived soil maps on Fig. 

5.2.2. For example, deconvolution problems that are block-to-block processes or 

problems that involve overlapping supports (which are described as side-scaling 

problems). The idea of Gotway and Young (2007) is that data of any kind of support 

whether it be point or block, is Z(B) = Z(B1),…, Z(Bn)) and prediction of Z(A) is of 

interest. The volumes A and B can be general which allows for several different types 

of scaling problems. For example, block kriging is a special case of this method 

when A is a volume or area and Bi are points. If A is a point and Bi is a volume or area 

where A is nested within Bi, the problem becomes one of deconvolution and the 

principals of mass-balance are preserved. Gotway and Young (2007) detail the 
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statistical inference of this framework and its demonstration of use. One advantage of 

this framework are its versatility for solving a range of scaling problems with one 

method, negating the requirement for resorting to specific solutions for a given 

problem. Furthermore, measures of uncertainty can be obtained for the predictions.      

5.4. Validation of soil information products generated from re-scaling methods 

The validity of the soil information that is generated from the discussed scaling 

processes is particularly important in the context that the information may be used 

for decision making or modelling purposes. Ideally the most accurate information 

that is available is desirable. There is certainly greater value and perceived accuracy 

if soil survey is coupled directly to the requirements of a project, yet in most 

situations this is prohibitive due to time and cost constraints. In the absence of such 

new soil survey, the methods discussed and the subsequent outputs will in most 

situations be the best available. Therefore, caution or at least awareness is required of 

the uncertainties associated with the new information outputs resulting from 

performing these scale manipulations. 

Firstly, existing soil information will have some quantifiable uncertainty. As a 

result this uncertainty will also propagate through to the new information outputs. 

More often than not, the uncertainties are very rarely included with a map to be 

scaled, which is not ideal but something that must be acknowledged. When 

uncertainties are available, incorporating them into the scaling process is desirable. 

For example, while only demonstrated for block kriging (Section 5.3.2.2), the kriging 

equations can be modified to include uncertain data and this is applicable to all forms 

of other kriging. Furthermore, as described in the next chapter, the method used for 

disseveration also allows one to incorporate uncertainties of the source map into the 

process for creating the destination map.    

Secondly, a general assumption of the methods discussed is that the behaviour of 

soil at large scales is explained by the average of the soil behaviour at the fine scales.  

This may or may not be upheld in reality or may only be relevant at a specific range 

of scales (Addiscott and Mirza 1998). Grunwald et al (2011), citing deYoung et al. 

(2008), does explain however that nonlinear dynamics and alternate states are well 

known in ecological systems, yet they have been poorly investigated in the soil 

science domain. It is beyond the scope of this chapter, but one way to investigate the 
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variance of soil properties at different scales, as Pettitt and McBratney (1993) 

suggests, is by performing nested sampling which will additionally help recognise 

the existence of natural hierarchies. Lark (2005) also described the value of nested 

sampling for understanding soil processes at different scales. Understanding the 

dynamics of soil processes better at different scales will obviously complement 

efforts when scaling of existing soil information is required.  

Assessing the level of uncertainty of the new soil information outputs will 

ultimately be required with some form of validation. When kriging operations are 

performed, the kriging prediction error provides a quantitative and spatially explicit 

measure of the uncertainty. Otherwise, internal validations from diagnostic measures 

such as the coefficient of determination or the root mean square error among others 

provide some way of assessing the validity of outputs. This would be the case if a 

scorpan model was used for a fine-gridding operation; similarly for disseveration 

with covariate information. However these internal validations may be susceptible to 

bias (Brus et al. 2011) and the kriging prediction variances as exemplified in the 

example of convolution (P1→P2) will underestimate or oversimplify the true 

prediction uncertainty.  

An unbiased approach to validating the new maps would be to collect additional 

samples from the study area under evaluation. To validate digital soil maps, Brus et 

al. (2011) recommend a design-based sampling strategy involving probability 

sampling. While an extra time and cost impost, design-based (and unbiased) 

estimation of map quality measures can be obtained with this type of sampling. 

When the support of observations is a point the external validation is not a 

technically difficult exercise. However, a technical and almost certainly costly 

challenge is the requirement to validate maps which have some areal support. This 

would require, if probability sampling is used, sample collection at a limited number 

of point locations within randomly selected validation supports. The average of the 

soil variable at these locations would be assumed as representative of the entire 

support size unit. Determining the number of samples for a given support unit will 

probably come down to some cost criterion; however, coming up with an optimal 

and efficient scheme for validating block support maps is an area of work will 

require further research. 
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5.5. Concluding remarks 

Upscaling and downscaling are loosely used terms in the DSM community to refer to 

procedures for manipulating the scale of soil information outputs. However, these 

terms may be too general for digital soil maps because manipulations of scale not 

only involve changes to extent and resolution but more often than not, adjustment of 

the prediction support as well. I used a generic soil map model as a means to 

introduce terminology that explicitly describes specific scale manipulations involved 

in terms of changes to grid cell spacing and prediction support.  

Fine-gridding and coarse-gridding are operations where the grid spacing changes 

but support remains unchanged. Deconvolution and convolution are situations where 

the support always changes which may or may not involve changing the grid 

spacing. Disseveration and conflation operations occur when the support and grid 

size are equal and both are then changed equally and simultaneously. A non-

exhaustive suite of pedometric methods are described with examples of how to 

implement each scaling procedure. The reliability of outputs generated from scale 

manipulations will contain some quantifiable measure of uncertainty attributed to 

incomplete knowledge of soil processes at different scales and general modelling 

based uncertainties. It is recommended that if resources are available, validation of 

new map outputs is performed by collecting additional samples. Some technical 

challenges, particularly for validation of block support maps, persist and need to be 

investigated further.  
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Louise: How did you get here?  

Johnny: Well, basically, there was this little dot, right? And the dot went bang and 

the bang expanded. Energy formed into matter, matter cooled, matter lived, the 

amoeba to fish, to fish to fowl, to fowl to frog, to frog to mammal, the mammal to 

monkey, to monkey to man, amo amas amat, quid pro quo, memento mori, ad 

infinitum, sprinkle on a little bit of grated cheese and leave under the grill till 

Doomsday. 

[Motion picture: Naked (1993)] 

 

  

http://www.imdb.com/name/nm0789093/�
http://www.imdb.com/name/nm0000667/�
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Chapter 6 

A general method for downscaling digital soil maps 

Summary 

This chapter continues the investigations of scale manipulations for digital soil 

mapping, but exclusively in terms of the previously defined disseveration. In this 

chapter a novel methodology (called dissever) for downscaling coarsely resolved 

digital soil maps using available finely gridded covariate data is presented. Under 

the assumption that the relationship between the target variable being downscaled 

and the available covariates can be non-linear, dissever uses weighted Generalised 

Additive Models (GAMs) to drive the empirical downscaling function. An iterative 

process of GAM fitting and adjustment attempts to optimize the downscaling to 

ensure that the target variable value given for each coarse grid cell equals the 

average of all target variable values at the fine scale in each coarse grid cell. A 

number of outputs needed for mapping results and diagnostic purposes are 

automatically generated from dissever. The functionality of dissever is demonstrated 

by downscaling a soil organic carbon (SOC) map with 1km by 1km grid resolution 

down to a 90m by 90m grid resolution using available covariate information derived 

from a digital elevation model, Landsat ETM+ data, and airborne gamma 

radiometric data. dissever produced high quality results as indicated by a low 

weighted root mean square error between averaged 90m SOC predictions within 

their corresponding 1km grid cell (0.82 kg m-3). Additionally, from a concordance 

between the downscaled map and another map created using digital soil mapping 

methods there was a strong agreement (0.94). Future versioning of dissever will 

investigate quantifying the uncertainty of the downscaled outputs.  
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 6.1. Introduction  

As described in Chapter 5, the spatial scale at which digital soil information is 

required is often mismatched to the scale at which it is available. One way of 

harmonising the ‘what is required’ with the ‘what is available’ is the application of 

either upscaling or downscaling methods. The focus of this study is on the 

application of a general method for downscaling- namely disseveration. Scale for 

digital soil maps as previously defined, is described in terms of extent, grid cell 

resolution and support. Thus downscaling in the general sense can be defined as a 

process involving the transfer of information from a coarser to a finer scale or 

resolution by either mechanistic or empirical functions (Bierkens et al. 2000).  

Downscaling has particular traction in climatology research (IPCC 2001) where 

outputs of climate simulations from general circulation models (GCMs) cannot be 

directly used for hydrological impact studies of climate change because of a scale 

mismatch (Wilby et al. 1998; Bloschl 2005). The grid resolution of GCMs is 

generally in the order of hundreds of kilometres. In contrast, the resolution at which 

inputs to hydrological impact models are needed is in the order of tens of square 

kilometres. Studies by Schomburg et al. (2010) and Wilby and Wigley (1997) detail 

a number of approaches for downscaling GCM model output for use in driving finer 

scaled soil-vegetation-transfer or hydrological models. In other related environmental 

research fields, Liu and Pu (2008) aimed to enhance land surface temperature 

products using coarsely resolved satellite thermal infrared imagery. The statistical 

method for downscaling used by Liu and Pu (2008) was originally developed for 

disaggregating zonal census counts by Harvey (2002). Both Merlin et al. (2009) and 

Yu et al. (2008) set about downscaling soil moisture data retrieved from remote 

passive-microwave radiometer systems to finer resolutions in order to generate more 

compatible input for land surface and climate modelling. McBratney (1998) also 

discussed a number of potential applications for downscaling with particular 

reference to soil information.  

Most downscaling methods can be categorized into two classes:  empirical or 

mechanistic. Generally for either class, the problem of downscaling involves 

reconstructing the variation of a property at a fine resolution, given that only the 

value at the coarser resolution is known (Bierkens et al. 2000). Earlier studies from 

Tobler (1979) and, more recently, Gotway and Young (2002) detail the downscaling 
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approach that maintains the mass balance with the coarse scaled information known 

as the equal-area or pycnophylactic property. These could be simplified as 

approaches which attempt to harmonise the arithmetic average of the property values 

at the fine scale with the single property value at the coarse scale.  

Linear functions, splines and general additive models are examples of empirical 

methods and can be exemplified by Ponce-Hernandez et al. (1986) who developed a 

one-dimensional mass-preserving spline method for disaggregating soil horizon data 

to give a continuous function of the target variable with depth. Mechanistic 

approaches have had considerable application in climatology research where 

deterministic regional climate models are nested into GCMs, which means the initial 

and boundary conditions to drive the regional climate model are taken from the 

GCMs (Yarnal et al. 2001). A popular sub-class of empirical and mechanistic 

downscaling approaches involves using auxiliary or covariate information (Wilby 

and Wigley 1997). An implicit assumption when using this auxiliary information is 

that they are strongly related to the target variable which is being derived at the fine 

scaled resolution (for examples see Schomburg et al. 2010; Bierkens et al. 2000; 

Wilby and Wigley 1997).  

The general method presented in this study uses available fine-gridded covariate 

data to drive the downscaling procedure. Essentially this procedure is empirical and, 

through iterative model fitting, attempts to maintain mass balance; but rather than 

assuming a linear relationship between the target variable and the covariate data, it is 

also possible that the relationship can be non-linear. Therefore, a generalised 

multiple regression approach which replaces linear combinations of the predictors or 

covariates with combinations of nonparametric smoothing or fitting functions is 

used. This can be achieved with the use of generalised additive models (Hastie and 

Tibshirani 1990). Secondly, it is assumed that there is an element of uncertainty in 

the target variable that is being downscaled. Currently, while downscaling as a 

procedure is well-established (Wilby and Wigley 1997), it is often assumed or 

implied that there is no associated uncertainty in the values that are being 

downscaled. This is not the case with digital soil maps, for which there are a number 

of sources of uncertainty that are propagated through to the outputs. Alternatively, a 

soil map could be the product of a measurement or sensing device for which their 

will be some quantifiable measurement and or instrument error. To handle these 

uncertainties in the empirical downscaling process, higher weighting is given to 
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information which is more accurate than to information that is less accurate. I present 

this downscaling method as a program and subsequent algorithm called dissever and 

demonstrate its use in the downscaling of a coarse soil organic carbon map (SOC) to 

a finely gridded resolution.   

6.2. Material and Methods 

6.2.1. Algorithm for downscaling 

A two-stage algorithm, initialisation and iteration, is used to downscale existing 

coarsely resolved target variable data to a finer resolution and support size, which is 

determined by the resolution of the available fine gridded environmental covariates. 

The algorithm presented in this study is based on that described in Liu and Pu 

(2008); but has been modified to accommodate the inclusion of target variable 

uncertainties in addition to functionality for modelling non-linear relationships 

between a target variable and available covariates. The algorithm is called dissever; 

meaning disseveration. Disseveration as described in Chapter 5 is a downscaling 

procedure where the support and the grid spacing are equal and both are changed 

equally and simultaneously.  

The target variable value at each coarse resolution grid cell is defined as 𝑇𝑇�𝑘𝑘 , k = 

1, …,B; thus B is the total number of coarsely resolved grids cells across the extent 

of a particular study area. While  𝑡̂𝑡𝑚𝑚 , m = 1, …,D denotes the estimate of the target 

variable at each grid cell at the fine scale. In the spatial context there would be many 

m encapsulated by each k, the number of which would be determined by the 

resolution of m and will not be consistently equal, for example in study areas with 

non-symmetric boundaries. The number of m encapsulated by each k is denoted as E. 

For the initialisation stage where the iteration counter l is set to 0, 𝑡̂𝑡𝑚𝑚𝑙𝑙  is set equal to 

the value of its encapsulating target variable 𝑇𝑇�𝑘𝑘 . A weighted non-linear regression 

model between 𝑡̂𝑡𝑚𝑚𝑙𝑙   and the suite of available covariates is fitted to all the grid cells. 

dissever uses a weighted generalised additive model (Hastie and Tibshirani 1990): 

 𝑡̂𝑡𝑚𝑚 = 𝛼𝛼 + 𝑓𝑓1(𝑥𝑥1) + 𝑓𝑓2(𝑥𝑥2) + ⋯+ 𝑓𝑓𝑝𝑝�𝑥𝑥𝑝𝑝�   

[6.2.1] 



 

200 
 

where 𝛼𝛼 is a constant,  x1, x2,…, xp are each of the covariate data sources, while fj are 

non-parametric smoothing splines that relate 𝑡̂𝑡𝑚𝑚   to the covariates. The model 

assumes that  𝑡̂𝑡𝑚𝑚  is an additive combination of nonlinear functions of the covariates. 

Equation 1 can be re-written in the form: 

 𝑡̂𝑡𝑚𝑚 = 𝛼𝛼 + �𝑓𝑓𝑗𝑗

𝑝𝑝

𝑗𝑗=1

�𝑥𝑥𝑗𝑗 � 

[6.2.2] 

Through an iterative back-fitting algorithm all fj are computed which are obtained 

by means of a smooth of the dependent variable  𝑡̂𝑡𝑚𝑚  against the covariates xj. 

Justification of the back-fitting algorithm is given by the penalised residual sum of 

squares (PRSS) criterion which through subsequent iterations of the back-fitting 

algorithm is minimised (Hastie et al., 2001). Essentially the PRSS can be considered 

as a smoothing spline approach to estimate the additive model and is defined as: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝛼𝛼, 𝑓𝑓1,𝑓𝑓2, … 𝑓𝑓𝑝𝑝� =  �𝑤𝑤𝑘𝑘 ∙ �𝑡̂𝑡𝑚𝑚 − 𝛼𝛼 −�𝑓𝑓𝑗𝑗 (𝑥𝑥𝑚𝑚𝑚𝑚 )
𝑝𝑝

𝑗𝑗=1

�

2

+ �𝜆𝜆𝑗𝑗

𝑝𝑝

𝑗𝑗=1

𝐷𝐷

𝑚𝑚=1

��𝑓𝑓𝑗𝑗′′ (𝑡𝑡)�
2
𝑑𝑑𝑑𝑑𝑗𝑗  

[6.2.3] 

Each of the functions fj  is a cubic spline in the covariate xj, with knots at each of 

the unique values of 𝑥𝑥𝑚𝑚𝑚𝑚 , m = 1,…, D. The first term measures the “goodness of data 

fitting” or fidelity, the second term punctuated by the lambda 𝜆𝜆𝑗𝑗  term means 

‘penalties’ and is defined by the functions’ curvatures ∫�𝑓𝑓𝑗𝑗′′ (𝑡𝑡)�
2
𝑑𝑑𝑑𝑑𝑗𝑗 . The 𝜆𝜆𝑗𝑗  is 

considered the tuning parameter which controls the trade-off between the fidelity 

term and the penalties. Lastly, 𝑤𝑤𝑘𝑘  is the weighting vector assigned to each 𝑡̂𝑡𝑚𝑚 .  See 

Hastie et al. (2001) for further elaboration of the PRSS. The weighting vector of the 

GAM is a measure of the uncertainty that exists or was estimated in the predictions at 

the coarse resolutions. On the presumption that if the uncertainty is known, the 

weights for each grid cell k (wk) are simply a vector where the highest weighting is 

given to  𝑡̂𝑡𝑚𝑚  values that are the most accurate and so forth. In this study, the weights 

are the reciprocals of the variances of the coarse-scale grid-cell means.  

dissever then shifts to the iteration stage. At the l-th iteration, in order to make the 

average of 𝑡̂𝑡𝑚𝑚𝑙𝑙  estimates of  finer resolution grid cells equal to the value of their 
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encapsulating coarse resolution grid cell (i.e. to equal  𝑇𝑇�𝑘𝑘  ), 𝑡̂𝑡𝑚𝑚𝑙𝑙−1 are updated to 

𝑡̂𝑡𝑚𝑚𝑙𝑙  using the equation: 

𝑡̂𝑡𝑚𝑚𝑙𝑙  = 𝑡̂𝑡𝑚𝑚𝑙𝑙−1 ×  𝑇𝑇�𝑘𝑘
1
𝑚𝑚
∑ 𝑡𝑡𝑚𝑚𝑙𝑙−1  

  

[6.2.4] 

For simplicity the average of 𝑡̂𝑡𝑚𝑚𝑙𝑙  estimates ( 1
𝑚𝑚
∑ 𝑡̂𝑡𝑚𝑚𝑙𝑙 ) will be denoted as 𝑡𝑡𝑘̅𝑘𝑙𝑙 . With the 

newly adjusted value, a new weighted non-linear regression model (GAM) between 

𝑡̂𝑡𝑚𝑚𝑙𝑙   and the suite of available covariates is fitted to all the grid cells. Iterations 

proceed until 1
𝐷𝐷
∑|𝑡̂𝑡𝑚𝑚𝑙𝑙 − 𝑡̂𝑡𝑚𝑚𝑙𝑙−1| become equal to or decreases below a given stopping 

criterion value, SCV (the weights remain constant throughout). In the present study 

the SCV was set to 0.001. The algorithm dissever is summarised below in Figure 

6.2.1.  

Initialisation 

1. l = 0; 

2. Within each k, 𝑡̂𝑡𝑚𝑚𝑙𝑙 =  𝑇𝑇�𝑘𝑘   (m = 1, …, E and k = 1,…, B);  

3. Using a generalised additive model, regress 𝑡̂𝑡𝑚𝑚𝑙𝑙  on x1, x2,…, xp covariates with 

the weights wk.  

Iteration 

4. l = l+1  

5. Update the model estimates: 𝑡̂𝑡𝑚𝑚𝑙𝑙  = 𝑡̂𝑡𝑚𝑚𝑙𝑙−1 ×  𝑇𝑇�𝑘𝑘
𝑡𝑡𝑘̅𝑘
𝑙𝑙−1  

 

6. Using a generalised additive model, regress 𝑡̂𝑡𝑚𝑚𝑙𝑙  on  x1, x2,…, xp covariates 

with the weights wk 

7. If  1
𝐷𝐷
∑|𝑡̂𝑡𝑚𝑚𝑙𝑙 − 𝑡̂𝑡𝑚𝑚𝑙𝑙−1| is ≥ SCV, repeat 4-6; otherwise, iteration terminated.  

Figure 6.2.1. The downscaling algorithm written into the dissever program. 

6.2.2. Downscaling using dissever 

For this study, dissever was scripted in the R programming language (Ihaka and 

Gentleman 1996). It calls up the R package: gam (Generalised Additive Models) 

(Hastie 2011) for the regression steps of dissever. Operationally, dissever is 

structured as a function which requires two information inputs or objects: a data table 
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containing the target variable information, associated weights (if known) and 

covariate data source information; and the GAM formula (which is of a “formula” 

class R object) used for both the initialisation and iteration steps.  

The form of the table is a data frame of U number of columns by V number of 

rows.  Each row is a grid cell location within the area of study. Together all rows 

correspond to all the regular grid cell positions in the area of interest at the fine 

gridded scale. Generally, Columns 1 and 2 of the data table will correspond to the 

spatial coordinates. Column 3 is an ordinal data type column where each number 

corresponds to k (1, 2, 3,…B) from the coarsely gridded data. There is an obvious 

row number mismatch in order to arrange the coarse grid k to fit the corresponding 

number of rows at the fine gridded resolution. To overcome this, the coarse gridded 

information is fine gridded using a nearest neighbour re-sampling approach. 

Conceptually, this is just a matter of assigning the coarsely gridded cell values, here 

k, to each finely gridded cell it directly encapsulates in the spatial context. This fine 

gridding process is repeated also for the values of the target variable  𝑇𝑇�𝑘𝑘  and their 

weightings. The fine gridded attribute values and weightings are situated in columns 

4 and 5 respectively. The remaining columns (6 to U) correspond to each of the 

covariate data sources that have been compiled for a study area.  

It is up to the user to determine which combination of covariates to include in the 

model. The combination of which can be controlled by selecting the column names 

which correspond to the covariate data source required for inclusion.  Once the two 

objects required for dissever are initialised, it is activated and will run until the 

stopping criterion is met or 100 iterations have run, which ever comes first. Once the 

function terminates, a number of outputs are created and used for mapping outputs 

and diagnostic analyses of the downscaling performance. A table containing the  𝑡̂𝑡𝑚𝑚  

predictions with appended spatial coordinates is created as are the estimates of the 

average of all fine gridded values (𝑡𝑡𝑘̅𝑘𝑙𝑙 ) within their corresponding coarse grid cell k. 

In terms of quantifying the mass balance deviation, iterative estimates of the 

weighted root mean square error (wRMSE) are given between 𝑡𝑡𝑘̅𝑘𝑙𝑙   and 𝑇𝑇�𝑘𝑘 , which is 

evaluated as the square root of the estimated weighted mean square error �𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤� �: 
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𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤� =
1

∑ 𝑤𝑤𝑘𝑘
𝐵𝐵
𝑘𝑘=1

�𝑤𝑤𝑘𝑘�𝑇𝑇�𝑘𝑘  − 𝑡𝑡𝑘̅𝑘𝑙𝑙 �
2

𝐵𝐵

𝑘𝑘=1

 

[6.2.5] 

Furthermore, there are iterative outputs from dissever which are essentially 

diagnostic measures of each GAM fit. The measures are given in terms of deviance 

which is similar to a residual sum of squares, and the proportion of deviance 

explained by each iterative GAM (1-[residual deviance / null deviance]), which is 

comparable to the coefficient of determination (R2) from ordinary least squares 

regression. Akaike’s Information Criterion (AIC) (Akaike 1973) is also generated 

from each GAM, and is a useful measure for comparing models of differing 

complexity, which for dissever would be adjusted (complexity) on the basis of the 

number and combination of covariates used for downscaling. The AIC is simply a 

measure of the relative goodness of fit  of a  model and is used for comparative 

purposes whereby the ‘best’ model is the one in which the AIC is minimised.  

6.2.3. Case study 

I demonstrate the use of dissever for downscaling  a soil organic carbon (SOC) map 

featuring the variation of SOC (kg m-3) in the top 30cm of the soil profile around 

Edgeroi, a 1500km2 agricultural district in north-western NSW, Australia (30.32°S 

149.78°E). This SOC map has a block support, consisting of 1 km by 1 km blocks 

centred on a square grid with a spacing of 1 km, hereafter referred to as the 1km 

blocked map. This map was downscaled to 90m by 90 m blocks centred on a square 

grid with a spacing of 90 m (90m blocked map).  

The 1km blocked map was created for the specific purpose of demonstrating the 

application of dissever, such that it is the resultant product of a simple block 

averaging procedure (within 1km blocks) of an existing block support map; of the 

same support and grid cell spacing as the 90m blocked map, hereafter referred to as 

the 90m base map. The reason for this process was to build in a generalised 

validation whereby the 90m blocked map (that resulted from using dissever) could 

ultimately be compared with the 90m base map. Obviously in a true situation where 

downscaling would be necessary, such a comparison would not be possible.  

Model-based methods in a digital soil mapping environment using legacy soil 

information and spatial interpolation procedures (McBratney et al. 2003) were used 

http://en.wikipedia.org/wiki/Goodness_of_fit�
http://en.wikipedia.org/wiki/Statistical_model�
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to create the 90m base map—specifically, a regression kriging model, not too 

dissimilar to  that used in Chapter 2 was used.. Block averaging predictions of the 

90m base map into 1km blocks effectively created a product that might be obtained 

from a remote-sensing device, or might have been interpolated to this resolution 

because of a lack of predictive covariates at finer resolutions. For the downscaling, 

the covariates used by dissever were the same as those used to create the 90m base 

map. These included those derived from a digital elevation model (DEM): elevation, 

slope (degrees), mid-slope position, terrain wetness index (TWI) and incoming solar 

radiation; those derived from Landsat ETM+ imagery (2009) which included 

normalised difference vegetation index (NDVI) in addition to a series of band ratio 

derivatives:- band 5/band 7, band 3/band 7 and band 3/band 2; and those derived 

from airborne gamma-spectrometry information which included the channels that 

correspond to the abundances of both radiometric potassium and thorium. All 

covariate data sources were resolved to 90m grid cell resolution. for this study, 𝑤𝑤𝑘𝑘  

was the inversed variance of each 1km block averaged 𝑇𝑇�𝑘𝑘 .  

6.3. Results 

The 90m base SOC map is shown on the top panel of Figure 6.3.1. Upscaling this 

map using the block averaging procedure resulted in the map on the second panel of 

Figure 6.3.1 (1km blocked map) and the block average standard errors (last panel of 

Figure 6.3.1).    
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Figure 6.3.1. Top Panel: SOC map displaying the variation of SOC in the top 0-

30cm across the Edgeroi study area produced from the regression kriging procedure 
using observed soil data and a suite of environmental covariates. Middle Panel: 

Upscaled map of the same target variable with 1km by 1km blocks centred onto a 
1km grid produced by block averaging. Bottom Panel: Map of the standard errors of 

predictions resulting from the block averaging procedure. 



 

206 
 

The 90m blocked map which resulted from running dissever is displayed below 

on the top panel of Figure 6.3.2. The map on the second panel of Figure 6.3.2 is that 

of the absolute difference between the values of the 90m base map and the 90m 

blocked map, represented as two classes of difference: < 2 kg m-3, and ≥  2 kg m-3. 

Based on these two classes about 86% (≈140 000) of the grid cells have an absolute 

difference of < 2 kg m-3. Absolute differences ranged effectively from 0 kg m-3 to 8 

kg m-3. The third panel of Figure 6.3.2 is a plot of the comparison between both fine 

scaled maps. Based on this comparison there was a co-efficient of determination (R2) 

of 90% (concordance: 0.94) between the soil map predictions and those resulting 

from the downscaling.   
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Figure 6.3.2. Top Panel: Downscaled SOC map created from dissever. Middle 
Panel: Map of the absolute differences (given as two classes of difference) between 

the downscaled map (90m blocked map) and the 90m base map. Bottom Panel: 
Concordance plot between the 90m blocked map and the 90m base map. 



 

208 
 

The real goal of downscaling is to reconstruct the variation of the target variable 

at a fine resolution within each coarsely resolved grid cell. To assess the quality of 

mass-preservation, one of the diagnostic outputs provided by dissever is a weighted 

root mean square error (wRMSE). For this case study the average deviation between 

the average of all fine gridded values (𝑡𝑡𝑘̅𝑘𝑙𝑙−1) within their corresponding coarse grid 

cell ( 𝑇𝑇�𝑘𝑘) was 0.82 kg m-3. In a scenario running dissever without incorporating the 

weightings on the 1km blocked map value, it was found that the wRMSE was larger 

at 1.10 kg m-3. It was also found when running this scenario that there was a slight 

improvement in the R2 (92%) and concordance (0.96) values when comparing the 

90m base map with the 90m blocked map.   

6.4. Discussion  

The program dissever was designed initially for downscaling applications for DSM. 

However, it is a general downscaling algorithm which would suit a range of 

applications where scaling of information is required. This algorithm aims to 

determine the unknown spatial variation of a target variable at a fine resolution from 

an existing coarsely resolved map using a suite of finely resolved covariate or 

auxiliary data as predictor variables. Rather than assuming a linear function to 

describe the relationship between the target variable and available covariates, 

dissever makes the prediction of the target variable based on an additive combination 

of nonlinear functions of the covariates, which is a more general model for 

estimation of the unknown spatial variation. However, the GAM is not exclusive to 

dissever, and the algorithm can be simply modified to accommodate a user defined 

function. For example, it is possible to replace this model (GAM) with other 

deterministic functions which could include linear models, neural networks or 

regression trees as a few possibilities. While the current version of dissever allows 

the user to input the level of uncertainty associated with the information being 

downscaled, accommodating these uncertainties using other deterministic functions 

has not been investigated. In the case of dissever however, if the uncertainties are not 

known, downscaling will proceed using equal weights.  

The wRMSE provides a quantitative measure to assess the mass balance 

deviation between the coarse gridded information and the downscaled fine gridded 

information, and the aim in any project is to minimise it.  As discovered in this study, 
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taking into account the uncertainties of the 1km blocked map resulted in differing 

estimates of the wRMSE; 0.82 kg m-3 as opposed to 1.10 kg m-3. In the situation of 

using equal weightings, the wRMSE is essentially a measure of an unweighted 

RMSE. The logic of including the uncertainties into the downscaling process ensures 

that greater weighting is given to information that is more accurate and less 

weighting to less accurate information; the wRMSE measure also takes this into 

account.    

It is important to note that the wRMSE does not quantify the quality of 

downscaling; merely the deviation of mass balance. Thus downscaling may lead to 

poor results in situations where the fine grid cell variation has not been correctly 

predicted, even if the wRMSE is small. Nevertheless, in this study, the wRMSE 

appears to be quite acceptable in consideration of the concordance between the 90m 

base map and the 90m blocked map. This result was to be expected given that the 

combination of covariates used to create both maps were the same. This meets one of 

the implicit assumptions of downscaling using covariate data, in that they need to be 

strongly related to the target property which is being derived at the fine scale. The 

general features of both maps are comparable and where there was discrepancy it 

was predominantly in the order of < 2 kg m-3 (absolute difference). 

Determining some reasons why disseveration of the coarsely resolved soil data 

was better in some areas than in others warrants further investigation, but is likely to 

have been attributed to the fact that in areas where disseveration was poorest, the 

uncertainty of the 1km block map was greatest. Additional to this factor, expert 

knowledge of the study area indicated that in areas where disseveration was poorest, 

there was a greater spatial variation of the 90m gridded covariate data inside each 

1km block. This feature highlights a common limitation of downscaling in that 

irrespective of the approach, all the known variability of a target variable is seldom 

captured at a given scale (Wilby and Wigley 1997). It will be useful however in 

further research and subsequent versioning of dissever to determine a more 

sophisticated approach of assessing the uncertainties resulting from the downscaling, 

or in other words quantifying the confidence of the downscaled predictions. It is 

perceived currently that a disadvantage of dissever (and other downscaling 

procedures) is that it introduces bias attributed to differences between the averages of 

the fine gridded target variable data with that of the corresponding coarse gridded 

data. Therefore, in addition to an incomplete knowledge about the variation of the 
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target variable within each coarse grid cell, there is also this bias to account for when 

considering the magnitude of the prediction uncertainty resulting from downscaling.   

With respect to the case study, the information relating to the covariates was 

known a priori to the downscaling. Such information for the general application of 

downscaling will obviously not be available and thus it is up to expert opinion or 

empirical analysis to determine suitable covariates to include in dissever. Empirical 

analysis is exemplified by the wRMSE measure in addition to the deviances and AIC 

estimates that result directly from the GAM fits. Particularly the AIC and to a lesser 

extent the residual deviance, both provide an objective tool to the user to decide 

which combination of covariates achieves the optimal downscaling outcome. As 

explained by Webster and McBratney (1989) the AIC is the statistical analogue to 

Occam’s razor; minimising the AIC results in a fair compromise between goodness 

of fit and parsimony.  

Overall, this program was tested on a dataset with ≈ 175 000 grid cell nodes  

(fine-grid). With this size dataset, downscaling terminated after 1-2 hours. However, 

the computational time required is dependent upon the complexity of the GAM used 

(increasing or decreasing the number of predictive covariates). Generally, its 

usefulness for downscaling has been demonstrated. There is some expertise required 

to arrange the spatial data to generate the input table required by this program. More 

importantly, however, is the necessary technical and theoretical expertise to decide 

which auxiliary data sources dominate at the scale for which the target variable is 

being downscaled.  

6.5. Conclusions 

One issue of spatial information is that the scale at which it is available is often 

inadequate or does not correspond to the scale at which it is required. There are 

established methods for upscaling and downscaling which are able to address these 

issues.  The program dissever described in this chapter is a new program that builds 

on existing empirical methods of downscaling earth resource information, yet is 

suited specifically for DSM. Principally, while attempting to maintain the mass 

balance with the available coarse scaled information, dissever, through an iterative 

algorithm, attempts to reconstruct the variation of a property at a prescribed fine 
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resolution through an empirical function using auxiliary information. The features 

which differentiate it from other methods are:  

• It generalises the multiple regression approach which replaces linear 

combinations of the predictors or covariates with combinations of non- 

parametric smoothing or fitting functions. This generalised fitting allows the 

possibility to accommodate non-linear relationships between the target variable 

and the covariates. 

• The target variable uncertainties at the coarse scale are incorporated into the 

downscaling algorithm which subsequently moderate the outcomes of the 

downscaled products and associated measures of mass balance deviation.   
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Cast down your bucket where you are. 

[Booker T. Washington 1895] 

  



 

218 
 

 

 

  



Chapter 7 - General discussion, conclusions and future work 

  

219 
 

Chapter 7 

General discussion, conclusions and future work 

7.1. General discussion 

7.1.1. Comprehensive spatial soil information 

This thesis has set forth some practicable methodologies for delivering 

comprehensive spatial soil information. In terms of comprehensive spatial soil 

information, Chapter 2 addressed the need for whole-profile mapping of soil property 

distribution. Fundamental to this approach was the coupling of equal-area spline 

depth functions with digital soil mapping (DSM) procedures. Predictions alone 

however do not suffice for critical decision-making purposes; rather it is equally 

important to have some measure of certainty attached with the predictions in order 

for the end-users to determine the reliability or suitability of the spatial soil 

information products. Chapter 3 addressed this need by setting forth an empirical 

method of uncertainty analysis for DSM. This approach is independent of the soil 

spatial prediction function (SSPF). Uncertainty is expressed as a prediction interval, 

where for a nominal confidence level, at every pixel or grid cell, a reciprocal level of 

certainty can be given to the expectation that the true but unknown soil property 

value would lie within the interval. This uncertainty method was extended to 

quantify the prediction uncertainties for whole-soil profile mapping of soil 

properties. New map validation criteria were then proposed in Chapter 4 which 

provided quantitative measures of map quality based on the predictions and their 

uncertainties. These measures were the Mean Square Error of a Simulated random 

value (MSES), which is a prediction accuracy criterion that takes into account the 

prediction uncertainties. The second criterion was the Prediction Interval Coverage 

Probability (PICP) expressed as the Areal Proportion of Correct Predictions (APCP) 

given a 95% confidence level. The APCP explicitly addressed the quality of the 

quantifications of the uncertainties.  

These chapters (2, 3, and 4) represent a complete framework for delivering 

comprehensive whole-soil profile digital soil maps that have quantified uncertainties 

at every grid cell and depth. Furthermore, the framework incorporates delivering 

quantified measures of map quality both in terms of the predictions and the 
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uncertainties. Admittedly these three chapters dealt with DSM at the regional or 

watershed spatial scales without consideration to whether this framework would 

apply to other spatial scales. This is a minor issue and not likely to pose problems 

due to the frameworks’ flexible nature; there are some operational constraints 

nonetheless. One would be the requirement of available data, both observed soil data 

and environmental or secondary information (covariates) at the scale of interest to 

build and then subsequently extend the SSPFs and uncertainty estimations. A related 

constraint to extension of the framework to other spatial scales is observing and 

explicitly taking into account the scale-dependent behaviour of the soil-landscape 

relationships at the scales intended to be mapped.  

Chapters 5 and 6 then proposed a framework and new tools where, without the 

requirement of new soil survey, digital soil maps could be created to the spatial scale 

specifications of the end-users from existing maps. The framework is based on 

methods of upscaling and downscaling that observe the scaling triplet for digital soil 

maps: extent, resolution, and support.  

7.1.2. Practicable methodologies 

The concept of practicability will differ from person to person and their level of 

expertise. Furthermore how we define what is practicable will most likely change 

temporally as statistical theory is advanced and efficiencies in computing are further 

realised. Yet, moving towards the realisation of operational DSM means that 

practicable methods need also accommodate for the data that is used for mapping, 

such that often it comes from legacy soil survey which is often not ideal in terms of 

spatial distribution within a mapping domain, spatial density and accuracy (regarding 

measurement and positional accuracies). Furthermore, practicable methods must also 

be general enough to suit a range of different situations where they can be applied for 

a number of different soil properties. 

In Chapters 2, 3, and 4 there was a preference towards using SSPFs which were 

structurally based on regression kriging or scorpan kriging approaches (McBratney 

et al. 2003). Regression kriging is a general method that allows flexibility in 

selection of the trend model (deterministic model) between the observed data and the 

scorpan factors. These models may be linear or non-linear and even allow for 

incorporation of data-mining methods. We then treat the model residuals 

independently to determine whether there is any spatial structure that may be present 
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after de-trending, with the view that this additional spatial structure can be captured 

to improve the overall prediction outcomes. As previously described in the review, 

there are reservations about this approach in that it is theoretically biased (Cressie 

1993); empirical studies suggest that in reality the method is robust to biasedness. 

Considerations aside, the method is practicable; first because there is flexibility for 

deciding which type of deterministic model is appropriate for a given project. 

Secondly, the approach easily handles large data sets which for more statistically 

sound methods such as REML-EBLUP (Lark et al. 2006) may be prohibitive or may 

only make small overall improvements in the model outcomes.     

The equal-area spline depth function is a good example of a practicable method 

for modelling the depth variation of soil properties. Bishop et al. (1999) has 

previously shown it to be useful for a number of soil properties. In this project, 

splines were fitted to soil profile data describing variations in carbon storage and 

available water capacity (Chapter 2 and 3) and soil pH (Chapter 4) respectively 

without issues regarding the quality of the spline fit to the raw observed data (see 

plots on Figure 2.3.3 as an example). Admittedly, the raw data used in this project 

were of high quality where the frequency of observations recorded for each profile 

was generally quite high. However, the spline function is not a pedological model; 

rather it is a data model where the quality of the fit in terms of representing 

pedological features such as abrupt changes in soil behaviour is largely determined 

by the frequency of observations recorded within each profile. Wide application of 

the spline function has been demonstrated in this project, and it is probably more 

practicable than other depth functions proposed for DSM such as negative 

exponential depth functions (Minasny et al. 2006) and ones that incorporate explicit 

pedological knowledge (Kempen et al. 2011) as they are suited only to a few soil 

properties or only work in the areas where the pedological knowledge was 

established in the first place. It is not that these methods are inferior; rather the extent 

of their application is limited.  

Common methods of uncertainty analysis involve Monte Carlo simulations 

(Heuvelink et al. 1998) or Bayesian approaches (Diggle et al. 1998), which for 

operational DSM could be computationally prohibitive to consider as being 

practicable for DSM at global scales, for applications related to precision agriculture, 

or any situation that involves the use of very large datasets. A pragmatic step in a 

relatively complex field was therefore taken in this project to propose a practicable 



Chapter 7 - General discussion, conclusions and future work 

 

222 
 

method for quantifying uncertainties in relation to DSM. As described previously, 

uncertainty in this project is treated as the probability distribution of the output 

model errors, which comprises all sources of uncertainty (model structure, model 

parameters and input data). This is particularly useful when we are dealing with 

SSPFs that include data-mining tools or neural networks (as examples) in 

combination with the regression-kriging approach, where it would be difficult to use 

other existing methods (of uncertainty analysis) to derive model parameter 

uncertainties. It is also useful because it does not use multiple realisations of 

simulations to generate the probability distributions. Because of these efficiencies, 

what this empirical uncertainty approach facilitated overall was the ability to 

quantify the whole-profile prediction uncertainties generated from DSM at every grid 

cell. Moreover, the prediction intervals were generated without being a 

computational burden. Validation of the prediction intervals particularly in Chapter 

3, indicated the estimates of uncertainty were not unfounded whereby for a given 

confidence level, we would expect a corresponding proportion of observations to fall 

within their given prediction interval. In Chapter 4, it was, however, revealed that the 

prediction intervals are subject to bias and are not so representative at sub-soil 

depths. These deficiencies are discussed in more detail below. Technical issues aside, 

the fact that the quantifications of the uncertainties could be validated in the way 

they were in this project represents a significant step forward for DSM in general. 

Validation of soil maps unfortunately is not widely practiced, and validation of 

prediction uncertainties has seldom been done before for DSM. The impediments of 

computationally demanding uncertainty analysis procedures as previously discussed 

may be one of the constraints to wider testing of the quantifications of uncertainties. 

For operational DSM, application of the empirical approach for assessing 

uncertainties may negate some of these constraints.  

For assessing soil map quality, collection of additional samples from the field is 

recommended and variants of random sampling are ideal because unbiased 

estimators are quantified (de Gruijter et al. 2006). Unfortunately the time, cost and 

effort factors may prohibit this additional fieldwork from being carried out. Other 

methods of validation as previously discussed in the review include random holdback 

and leave-one-out-cross-validation which require no new data; rather they require 

some data to be left out of the model calibration process which are then used to test 

its (model) estimation quality. These methods are not optimal as the map quality 
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estimators will often be biased because the legacy data used to generate the digital 

soil map often does not come from a probability sample. But they are practicable 

alternatives when independent sampling can not be performed.  The view is that 

some form of validation is better than no validation, and for end users to objectively 

determine the reliability of a map, it is important that proper evaluation of digital soil 

maps is provided. Ultimately how this evaluation is done will be up to the 

responsible party for producing the map and what is practicable given the resource 

constraints. 

One of the biggest impediments to operational DSM is the availability of data at 

the spatial scales at which mapping needs to be performed. There is no general rule 

prescribing the ideal sampling density for mapping at a given spatial scale. However, 

empirical evidence from a review of soil carbon mapping suggests that sampling 

density decreases logarithmically as resolution increases (Minasny et al. 2012), 

which is analogous to high sampling density at field and farm spatial scales to low 

sampling density at continental or global spatial scales. Empirically, sampling 

densities have ranged in the order of 0.002 to 1100 samples per km2 for soil carbon 

mapping at global and field spatial scales respectively (Minasny et al. 2012). 

Because there is no general rule regarding sampling density and DSM, there are also 

no restrictions on generating maps at high resolutions using low sampling densities; 

the uncertainties of the predictions will reflect this however. Ideally, to generate a 

digital soil map one would want a representative sample from the mapping domain. 

Constraints due to time, cost and effort may make sampling the mapping domain an 

unviable option. It was in this context in Chapter 5 that a pragmatic step was taken 

by proposing a framework for going about scale manipulations on existing digital 

soil maps in order to generate spatial soil information products to the scale 

specifications of the end-users. The framework is based on practicable methods of 

upscaling and downscaling that observe the scaling triplet for digital soil maps: 

extent, resolution, and support. As such, upscaling and downscaling are probably too 

general for description, which therefore prompted the introduction of new terms:  

Fine-gridding and coarse-gridding for operations where the grid spacing changes but 

support remains unchanged. Deconvolution and convolution are operations where the 

support always changes, which may or may not involve changing the grid spacing. 

Disseveration and conflation operations occur when the support and grid size are 

equal and both are then changed equally and simultaneously. All of these methods 
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are desktop procedures which require no new soil observations. There is however, 

particularly for fine-gridding, deconvolution or disseveration, usually a requirement 

of covariate information that may explain the variation of soil at finer scales when 

working from coarse scaled digital soil maps. Fortunately, finding data of this kind is 

more and more likely as there is an increasing availability of data sources. Besides a 

variety of new environmental information, the spatial resolutions of these data are 

becoming available at finer resolutions (Minasny et al 2008). The availability of 

these new data sources is invaluable for downscaling and also useful for updating 

existing digital soil maps. 

7.2. Summaries of research findings  

7.2.1. Mapping continuous depth functions 

The parameters of the spline used for DSM are the harmonised depth interval 

observations that result from fitting splines to the raw soil profile or core data. This 

means that the values of the parameters at each depth are observations- not in the 

sense of the recorded ‘hard’ observations rather the interpolated ‘soft’ observations 

resulting from the spline fit. When the spline is fitted acceptably to a soil profile 

there is little difference between these ‘hard’ and ‘soft’ observations. By harmonising 

a collection of soil cores or profiles within a mapping domain in terms of the 

prediction depth intervals, there is allowance to concentrate predictions at specific 

depth intervals. For example there may be a requirement to generate a map of carbon 

concentration for the top 5 cm across a mapping domain; using the splines we can get 

around the issue that maybe for most of the soil profiles or cores, there is no explicit 

record of carbon concentration at this interval. Alternatively, prediction can be made 

at a succession of harmonised depth intervals (that are defined by the modeller) 

which can later be used as spline parameters to create continuous soil profiles at 

every grid cell within a mapping domain (as was done in this project). Once a 

continuous soil profile is predicted at every grid cell, Chapter 2 and 3 illustrated the 

amenability of the resulting geo-database for user-defined queries, for example, 

determining the depth at which soil carbon concentration decreases to below 1% etc. 

Having the tools to characterise and query soils in this pseudo-3D way, new 

possibilities for the retrieval and enquiry of spatial soil information can be realised.  
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Currently one of the problems however for mapping continuous depth functions 

is that the SSPF accuracy decreases with depth, which has also been reported 

elsewhere in Minasny et al. (2006) and Kempen et al. (2011). This indicates that the 

scorpan factors commonly used for DSM mainly explain the soil conditions in the 

top 30 to 50 cm. Yet their power for explaining soil variations in the subsoil can be 

quite poor. The challenge therefore is to find scorpan factors that are powerful for 

sub-soil predictions.  

7.2.2. Analysing uncertainties and the validation of digital soil maps 

Much has been discussed already about the practicability of the empirical uncertainty 

method used in this project. There are definite advantages in terms of computational 

efficiency and implementation compared to other approaches to analysing 

uncertainties.  

Fundamental to delivering comprehensive spatial soil information is attaching 

some quantification of the certainty to each prediction. This sort of information goes 

a long way towards making objective decisions about the suitability of digital soil 

maps to address a particular question. Digital soil maps are never made with 

complete certainty and thus we need to investigate why our SSPFs work well in 

some areas and poorly in others. These efforts then provide opportunities to improve 

maps in an objective way by targeting sampling to areas where predictions are poor.  

The key assumption of the uncertainty method used in this project is that areas 

that are common in terms of their environmental characteristics within a mapping 

domain will share a similar range of uncertainty. The root of this assumption is based 

on the fact that the covariate space of the soil observations are clustered into fuzzy 

classes from which each will then have an associated distribution of model errors or 

residuals. Using the fuzzy k-means with extragrades algorithm (McBratney and de 

Gruijter 1992) is useful for defining fuzzy classes where the extragrades are 

considered the outliers of a dataset  (which may have a distorting influence on the 

configuration of the main clusters) and exist spatially in regions of low density 

observations. This is important for soil mapping and analysing the uncertainties as 

areas that have low sampling density generally have higher prediction uncertainties 

which are represented as wider prediction intervals. The opportunity therefore to 

improve the maps generated in this project would be to target further sampling in the 

areas where the density of existing samples is low. 
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A requirement for future studies using the empirical uncertainty method is to 

perform the clustering of the covariate space independently for each soil property 

that is being investigated. It was not optimal in Chapter 3 to use the same scorpan 

factors for building the SSPFs for both available water capacity and carbon storage. 

This also meant that the fuzzy classes were the same for each soil property. For good 

DSM practice, it is important to determine what the important soil-landscape 

characteristics are for each target soil property. Not only will this improve the 

predictions alone, but the quantifications of the uncertainties will also improve. For 

DSM this will mean either expert decision-making to decide which scorpan factors 

are important or perform a statistical multivariate analysis. This will mean ultimately 

that the characterisation of the fuzzy classes used for defining the uncertainties are to 

be performed independently for each target soil property. This is extra work but the 

computational efficiencies of the uncertainty method mean that this targeted work is 

not prohibitive.  

Ultimately, the objective way to evaluate the quality of digital soil maps in terms 

of the predictions and their uncertainties is through validation. With the 

quantification of prediction uncertainties, Chapter 4 proposed new criteria to test 

their quantifications- MSES and APCA. Coupling these criteria with conventional 

measures of map quality (which address the quality of the predictions only) such as 

the MSE, ME and imprecision, provides new tools for decision making in the 

presence of quantified uncertainties. In the end, regardless of the purported map 

quality, it is up to the end-user to determine the suitability for addressing a particular 

question.   

Assessing the quality of the uncertainties with validation did however reveal that 

prediction intervals are susceptible to bias, which was an outcome in Chapter 4. This 

bias results from using legacy soil data for model calibrations which do not represent 

a statistical sample of the mapping domain. It is difficult to remedy this as we can 

only work with the data that is available. Awareness of bias however presents a 

valuable opportunity for improving digital soil maps by sampling in the areas where 

the uncertainties are highest. Spatially balanced sampling designs, such as 

generalised random-tessellation stratified sampling (GRTS; Stevens et al. 2004) may 

be adapted in these situations because they ensure the whole geographical space is 

satisfactorily sampled. A similar spatially-balanced design has been proposed by 

Walvoort et al. (2010) which uses compact geographical strata from k-means 
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classification. Alternatively, the use of other statistical sampling designs for new soil 

survey work may be implemented. For example, approaches such as stratified 

random sampling of the geographical space (McKenzie and Ryan 1999) or Latin 

Hypercube Sampling (Minasny and McBratney 2006) are recommended.  It is with 

these methods that representative samples can be taken from the mapping domain as 

the whole geographical space (covariate space) defined by the scorpan factors can be 

sampled.  

Chapter 4 focused on validation of a soil pH map, and the sampling design and 

characterisation of the strata were based on the prior predictions of pH and their 

uncertainties. In a way the sampling design was optimised for validating the soil pH 

map, but not for other thematic maps that may need to be validated at some other 

given time. It is not that the additional samples cannot be used for validation of other 

thematic maps; it is that the samples no longer represent a proper statistical sample in 

the strictest sense. A practicable way as discussed in Chapter 4 to concurrently 

evaluate a number of thematic soil maps is to perform compact geographical 

stratification, where the mapping domain is stratified on the basis of spatial 

coordinates, followed by a random sample from each stratum (Brus et al. 1999).  

7.2.3. Comprehensive digital soil mapping using low-cost input data 

From the two datasets used in this project—The Edgeroi Dataset and The Hunter 

Valley Soil Dataset—common features were apparent. Firstly, the soil spatial 

prediction functions were not overly powerful in predicting the total variation that 

was observed in each dataset. Secondly, from the associated uncertainty analyses for 

both datasets, considerable levels of uncertainty were quantified. From what has been 

established from this thesis, the likely cause of these outcomes is twofold. 1)  Soil is 

incredibly complex and is difficult to comprehend with the current quantitative 

models and covariate data sources at the disposal for DSM —our models are merely 

just abstractions of the reality. 2)  In terms of geographical coverage and sampling 

density, the input data used to calibrate the spatial soil prediction functions were not 

optimal given the scale at which the mapping was produced for. Given the 

knowledge that soil variability increases with increasing areal extents (Burrough 

1993) , and the reliance of operational DSM  using  sparsely populated, legacy soil 

datasets, similar outcomes as observed in this study (possibly even worse)  have been 

observed  or are to be expected for other projects. As stated in Chapter 2, low and 
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accuracies and/or high estimates of uncertainty should not be interpreted as a failure 

of the method, rather as a limitation of the low-cost data that is used by construct the 

spatial soil prediction functions. The ability of DSM methods being able to quantify 

map accuracies and measures of uncertainty means one can express strong rationale 

for motivating further investments in input data—including both soil information and 

environmental covariate data sources. 

The question is, what is an acceptable level of accuracy, or what threshold for 

uncertainty can one accept before a digital soil map can be deemed acceptable or 

unacceptable? This was touched on in Chapter 4, and basically when it comes down 

to it, it is the end-user whom decides the fitness for a particular purpose.  This may 

be interpreted as a vague recommendation; however, there is no end in difficulty in 

determining what ones perception of acceptable is without firstly asking what 

purpose is the map to serve and at what scale is the information required. There is not 

much if any known literature which broaches the topic of defining soil map quality 

thresholds on the basis on who the end-users are, and at what scale the information is 

required. This area of specification that is likely to become important soon and into 

the future as DSM moves further into operational status.  

Dependent on the nature of the digital soil map end-use, intuitively, what is 

deemed acceptable will invariably range significantly. For example, one could easily 

ascribe different levels of map quality if it to be used for informing policy, or 

determining landuse suitability, or estimating carbon stocks. On assessment, one 

would expect the criteria for accepting a map for the use of assessing carbon stocks 

to be a lot stricter (more accurate) than that for assessing landuse suitability etc.  

Similar intuition is needed when assessing soil maps at different spatial scales. In 

situations where precision agriculture is performed (field and farm scales), there will 

be a lot of observed soil points with which to develop a reliable spatial prediction 

function. From this we would also assume the spatial variability of the target soil 

properties at these scales is less than at larger scales. Thus one would expect more 

accurate soil maps.  Conversely at larger scales, where there is usually less data, yet 

more soil variability to capture; one would accept soil maps with purported  lower 

accuracy and higher uncertainties (than for field  and farm scale DSM) more readily.   

In summary, with the low-cost data we often use for digital soil mapping, we 

have to live with, and be accepting of, a lot of uncertainty. One should not be in the 

practice of discarding soil maps. Rather, there is a compelling argument for policy 
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makers to invest in soil mapping efforts. If it is the end-user whom requires soil 

information to meet some quality criteria, then they must invest appropriately to 

achieve those ends, rather than relying on the low-cost information. The digital soil 

mapping toolbox is more than capable of meeting the needs of the end user given 

further investment on their part in regards to input data. There is however some work 

to do on putting numbers to what is acceptable from the perspective of what the soil 

information is to be used for, and due consideration of the mapping scale.    

7.2.4. Scale manipulation  

Soil survey to complement digital soil map creation is ideal but not always possible 

for every situation where spatial soil information is required. One of the assumptions 

of the scale manipulations investigated in Chapters 5 and 6 is that the behaviour of 

soil at large scales is explained by the average of the soil behaviour at the fine scales. 

From an implementation perspective, this makes the methods of scale manipulation 

more practicable. The assumption may or may not be upheld in reality or may only 

be relevant at a specific range of scales (Addiscott 2010). Non-linear relationships 

between different spatial scales have been observed in ecological systems and most 

probably will be observed in terms of soil variability at different spatial scales 

(Crawford 2010). Thus, end-users should be aware that outputs generated from scale 

manipulations will contain some quantifiable measure of uncertainty attributed to 

incomplete knowledge of soil processes at different spatial scales and general 

modelling based uncertainties. While some of the scale manipulation methods that 

are based on geostatistical concepts can provide measures of certainty of the 

predictions such as kriging variances, this project did not address methods of formal 

uncertainty analysis for digital soil maps resulting from scale manipulations. Some 

pointers to be aware of however include the need to know the uncertainties of the 

source map. These then need to be incorporated within the formulation of the scaling 

methods. The program for disseveration developed in this project- dissever is one 

such method that allows the incorporation of prior uncertainties. Alternatively, when 

geostatistical methods are used, the incorporation of measurement or prediction 

errors into the kriging system is also possible.  

Like other digital soil maps, evaluation of the outputs from scale 

manipulations should ideally be quantified by validation, and preferably by 

independent sampling. An important consideration in these situations is to ensure 
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that the support at which validations are made are equivalent to the support of the 

map to be validated  i.e. the entity for validation of block support maps need also to 

be block, similarly point support validations for point support maps. Some technical 

challenges particularly for validation of block support maps need to be investigated 

further. For example, how many samples need to be collected from a block so that it 

is representative of the block?        

7.3. Overall research conclusions 

Relevant spatial soil information is required for objective decision making to (1) 

address current problems associated with soil degradation; (2) for modelling, 

monitoring and measurement of particular soil services; (3) for general management 

of soil resources. Depending on the purpose, the likely spatial scales at which this 

information will be required, ranges from field size scales (resolution <20m) up to 

global scales (>2km). Predominantly using legacy soil data, this project set about 

proposing methodologies for delivering comprehensive spatial soil information to 

address these needs, with the idealistic pursuit that the methodologies be practicable: 

•  Comprehensive in the sense that delivered spatial soil information is tailored 

to meet the spatial scale specifications of the end user, and is of a nature that 

fully characterises the whole-soil profile with associated prediction 

uncertainties, and where possible, both the predictions and uncertainties have 

been independently validated.  

•  Practicable in the sense that the methods are general; can be applied to a 

wide range of soil properties; can handle variable qualities of data; and are 

effective when working with very large datasets. Ideally, practicable 

methodologies will also be computationally efficient.   

The investigations carried out during this project realised the following: 

• Equal-area spline depth functions are a useful tool for deriving the continuous 

variation of soil properties from soil profile and core observations. They are 

also suitable to use for a number of different soil properties. The coupling of 

the spline depth functions with digital soil mapping facilitates mapping in the 

lateral and vertical dimensions (whole-soil profile), the continuous 
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distribution of soil properties. With whole-soil profile digital soil maps, new 

vistas for the retrieval and enquiry of spatial soil information can be realised.  

• An empirical method for quantifying all sources of uncertainty (model 

structure, model parameters and input data) propagated through SSPFs for 

digital soil mapping was devised. This method was applied to assessing the 

prediction uncertainties of whole-soil profile digital soil maps where 

uncertainty is expressed as a prediction interval of the underlying model 

errors. The method is computationally efficient and amenable for complex 

SSPFs such as regression kriging approaches. 

• New criteria were devised to facilitate validation of the quantifications of 

uncertainties that result from digital soil mapping. These criteria would 

ideally be coupled with conventional measures of soil map quality to provide 

a proper evaluation of digital soil maps in terms of both the predictions and 

their uncertainties. 

• A framework of upscaling and downscaling approaches for digital soil 

mapping was devised. The framework takes into account the scaling triplet of 

digital soil maps and recommends pedometric methodologies for scale 

manipulation based on the scale entities of the source and destination maps. 

Scale manipulations are suitable for tailoring spatial soil information to the 

specifications of the end-users in situations where legacy data is not available 

or representative of the scale to be mapped or when it is prohibitive to 

conduct new soil survey. 
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7.4. Future Work 

Directly from the investigations carried out during this project there are opportunities 

for further work; both in terms of filling gaps which this project did not adequately 

address and more generally for advancing digital soil mapping into the operational 

phase and beyond. 

• There is an increasing richness of data sources describing the physical 

distribution of the Earth’s resources. These data sources retrieved from both 

remote and proximal sensing systems are being disseminated widely with 

improved qualities and resolutions. From these data sources, the search is on 

for scorpan factors that may improve SSPFs. The suitability of these data 

sources for predicting sub-soil distribution of soil properties needs to be 

investigated.    

• Related to the first point are the recent efficiencies gained from spectroscopic 

techniques for efficiently measuring soil properties. Visible, near-infrared, 

and mid-infrared diffuse reflectance spectroscopy techniques represent 

possible alternatives to enhance or replace conventional laboratory methods 

of soil analysis (Viscarra Rossel et al. 2006). These techniques could be 

applied to operational DSM in two ways: (1) Coupling these techniques for 

retrieving previously unrecorded soil property information from existing 

legacy soil spatial datasets; (2) The efficiencies gained in terms of lower costs 

and time for measuring soil properties means that the density of samples 

taken during field soil survey can be increased, meaning more data to 

calibrate SSPFs. 

• The efficacy of the methodologies proposed in this project in delivering 

relevant spatial soil information can never really be validated until real 

situations present themselves. One real-world application is Digital Soil 

Assessment (DSA) (Carre et al. 2007) which is interlinked with DSM where 

coupling of relevant soil property information with evaluations of soil 

functions and threats is performed. The mapping of particular soil functions 

and threats may serve the end-users more adequately than just thematic soil 

property maps if we are considering issues such as soil protection, and should 

be investigated further.  
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Serving the end-user is important and there is a need to specifically 

address ways in which spatial soil information is distributed and delivered. 

This is a ‘serving’ and infrastructure problem that soil mapping agencies will 

probably only be concerned with. Packaging information and efficient 

distribution thereof will ensure wider and continued use of spatial soil 

information. 

• This project has concentrated only on use of legacy soil data observations for 

digital soil mapping. However, using the soil maps created from conventional 

survey within a digital soil mapping framework will also be invaluable for 

delivering comprehensive spatial soil information. Conventional soil maps 

and their legends are representations of the soil surveyor’s mental soil-

landscape model (Bui 2004). Some sort of knowledge engineering is required 

to extract this valuable knowledge and couple with building SSPFs 

(knowledge-based systems). Efficient and continuous methods of 

conventional soil map disaggregation for retrieving spatial soil property 

information need also be investigated. Furthermore, statistical data 

assimilation methods for combining conventional soil map information with 

digital soil map information (based on soil site observations) could also be 

investigated. This data assimilation work is practised in climatology research 

for assimilating data types of different qualities and modes of measurement 

(Li and Shao 2010), its value for DSM is yet to be realised.       

• Improving the predictive power of SSPFs will also improve the certainty of 

the predicted digital soil maps. Some fine tuning of the uncertainty method as 

discussed previously would be ideal so as to optimise the quantifications of 

uncertainty for each target soil property independently.   

• Related to the previous point is that further work in necessary for defining 

perceived thresholds of digital soil map quality in terms of whether a map is 

suitable for a given purpose. What this requires is collaboration with end-

users at all levels—policy makers, researchers, farmers etc— to decide when 

a digital soil map is acceptable or unacceptable.  It is likely such thresholds or 

criteria will vary somewhat given the purpose and scale of the information 

required. However, once some criteria have been developed, it is foreseeable 

there will be strong rationale for motivating further investments in input data, 
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both in terms of new soil survey and sampling and also exploration or 

development of new covariate data sources. 

• Exploring other methods and sampling designs for the proper validation of 

digital soil maps need to be investigated. Investigating whether compact 

geographical randomised sampling is useful for validating a series of thematic 

maps concurrently within a single mapping domain needs to be investigated.  

• A more formal evaluation of the uncertainties of digital soil maps generated 

from scale manipulations needs to be investigated.   

• Optimal methods for validating digital soil maps with block support need to 

be investigated and tested.  

More generally, soil science appears to be back on the research agenda 

globally (Hartemink and McBratney 2008). The varied functions that soils 

perform and the human dependence on these functions is driving research to 

understand soils better and to manage them more appropriately. It is an exciting 

time to be involved in research that is potentially able to result in positive 

outcomes both for humans and soils. The task now is to disseminate the 

practicable methodologies proposed in this project to soil mapping agencies in 

order to meet the global demand for comprehensive spatial soil information.        
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