Journal Paper Digests

Reading time ~5 minutes

Journal Paper Digests 2021 #38

  • The role of public-private partnerships in improving global food security
  • Improved accuracy and reduced uncertainty in greenhouse gas inventories by refining the IPCC emission factor for direct N2O emissions from nitrogen inputs to managed soils
  • Achievable agricultural soil carbon sequestration across Europe from country-specific estimates
  • Mapping soil microbial residence time at the global scale

Mapping soil microbial residence time at the global scale

Soil microbes are the fundamental engine for carbon (C) cycling. Microbial residence time (MRT) therefore determines the mineralization of soil organic C, releasing C as heterotrophic respiration and contributing substantially to the C efflux in terrestrial ecosystems. We took use of a comprehensive dataset (2627 data points) and calculated the MRT based on the basal respiration and microbial biomass C. Large variations in MRT were found among biomes, with the largest MRT in boreal forests and grasslands and smallest in natural wetlands. Biogeographic patterns of MRT were found along climate variables (temperature and precipitation), vegetation variables (root C density and net primary productivity), and edaphic factors (soil texture, pH, topsoil porosity, soil C, and total nitrogen). Among environmental factors, edaphic properties dominate the MRT variations. We further mapped the MRT at the global scale with an empirical model. The simulated and observed MRT were highly consistent at plot- (R-2= .86), site- (R-2 = .88), and biome- (R-2 = .99) levels. The global average of MRT was estimated to be 38 (+/- 5) days. A clear latitudinal biogeographic pattern was found for MRT with lower values in tropical regions and higher values in the Arctic. The biome- and global-level estimates of MRT serve as valuable data for parameterizing and benchmarking microbial models.

Achievable agricultural soil carbon sequestration across Europe from country-specific estimates

The role of soils in the global carbon cycle and in reducing GHG emissions from agriculture has been increasingly acknowledged. The ‘4 per 1000’ (4p1000) initiative has become a prominent action plan for climate change mitigation and achieve food security through an annual increase in soil organic carbon (SOC) stocks by 0.4%, (i.e. 4 parts per thousand per year). However, the feasibility of the 4p1000 scenario and, more generally, the capacity of individual countries to implement soil carbon sequestration (SCS) measures remain highly uncertain. Here, we evaluated country-specific SCS potentials of agricultural land for 24 countries in Europe. Based on a detailed survey of available literature, we estimate that between 0.1% and 27% of the agricultural greenhouse gas (GHG) emissions can potentially be compensated by SCS annually within the next decades. Measures varied widely across countries, indicating differences in country-specific environmental conditions and agricultural practices. None of the countries’ SCS potential reached the aspirational goal of the 4p1000 initiative, suggesting that in order to achieve this goal, a wider range of measures and implementation pathways need to be explored. Yet, SCS potentials exceeded those from previous pan-European modelling scenarios, underpinning the general need to include national/regional knowledge and expertise to improve estimates of SCS potentials. The complexity of the chosen SCS measurement approaches between countries ranked from tier 1 to tier 3 and included the effect of different controlling factors, suggesting that methodological improvements and standardization of SCS accounting are urgently required. Standardization should include the assessment of key controlling factors such as realistic areas, technical and practical feasibility, trade-offs with other GHG and climate change. Our analysis suggests that country-specific knowledge and SCS estimates together with improved data sharing and harmonization are crucial to better quantify the role of soils in offsetting anthropogenic GHG emissions at global level.

Improved accuracy and reduced uncertainty in greenhouse gas inventories by refining the IPCC emission factor for direct N2O emissions from nitrogen inputs to managed soils

Most national GHG inventories estimating direct N2O emissions from managed soils rely on a default Tier 1 emission factor (EF1) amounting to 1% of nitrogen inputs. Recent research has, however, demonstrated the potential for refining the EF1 considering variables that are readily available at national scales. Building on existing reviews, we produced a large dataset (n = 848) enriched in dry and low latitude tropical climate observations as compared to former global efforts and disaggregated the EF1 according to most meaningful controlling factors. Using spatially explicit N fertilizer and manure inputs, we also investigated the implications of using the EF1 developed as part of this research and adopted by the 2019 IPCC refinement report. Our results demonstrated that climate is a major driver of emission, with an EF1 three times higher in wet climates (0.014, 95% CI 0.011-0.017) than in dry climates (0.005, 95% CI 0.000-0.011). Likewise, the form of the fertilizer markedly modulated the EF1 in wet climates, where the EF1 for synthetic and mixed forms (0.016, 95% CI 0.013-0.019) was also almost three times larger than the EF1 for organic forms (0.006; 95% CI 0.001-0.011). Other factors such as land cover and soil texture, C content, and pH were also important regulators of the EF1. The uncertainty associated with the disaggregated EF1 was considerably reduced as compared to the range in the 2006 IPCC guidelines. Compared to estimates from the 2006 IPCC EF1, emissions based on the 2019 IPCC EF1 range from 15% to 46% lower in countries dominated by dry climates to 7%-37% higher in countries with wet climates and high synthetic N fertilizer consumption. The adoption of the 2019 IPCC EF1 will allow parties to improve the accuracy of emissions’ inventories and to better target areas for implementing mitigation strategies.

The role of public-private partnerships in improving global food security

Global food security is at a tipping point. After decades of both absolute and relative improvement in food security worldwide, climate change, market disruptions and declining productivity have reversed the trend. After four decades of improving food security, both more people and a larger portion of the global population are hungry today than in 2015. In response, researchers and their funders, governments, industries and interest groups are urging renewed collaboration and partnerships to recover and return to accelerate food production and to improve food distribution. Recently some public academics and civil society organizations are opposing these public-private partnerships (P3s). The article reviews the context, discusses the logic for P3s and explores the range of P3s that have been used and their impacts on the global agri-food system. We conclude that rather than reversing direction, the use of both strategic and tactical partnerships should be accelerated in order to improve global food security.

Journal Paper Digests

## Journal Paper Digests 2024 #5* Global cropland nitrous oxide emissions in fallow period are comparable to growing-season emissions* So...… Continue reading

Journal Paper Digests

Published on February 28, 2024

Journal Paper Digests

Published on February 27, 2024